【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4).
(1)點(diǎn)B坐標(biāo)為
(2)如圖2,若C為x軸正半軸上一動(dòng)點(diǎn),以AC為直角邊作等腰Rt△ACD,∠ACD=90,連OD,求∠AOD的度數(shù);
(3)如圖3,過點(diǎn)A作y軸的垂線交y軸于點(diǎn)E,F為x軸負(fù)半軸上一點(diǎn),點(diǎn)G在EF的延長線上,以EG為直角邊作等腰Rt△EGH,過點(diǎn)A作x軸垂線交EH于點(diǎn)M,連FM,等式=1是否成立?若成立,請(qǐng)證明;若不成立,說明理由.
【答案】(1)(8,0);(2)90°;(3)=1成立,理由詳見解析.
【解析】
(1)因?yàn)椤?/span>AOB為等腰直角三角形,A(4,4),作AE⊥OB于E,則B點(diǎn)坐標(biāo)可求;(2)作AE⊥OB于E,DF⊥OB于F,求證△DFC≌△CEA,再根據(jù)等量變換,證明△AOB為等腰直角三角形,則∠AOD的度數(shù)可求;(3)等式成立.在AM上截取AN=OF,連EN,易證△EAN≌△EOF,再根據(jù)角與角之間的關(guān)系,證明△NEM≌△FEM,則有AM-MF=OF,即可求證等式成立.
(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB為等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);
故答案為:(8,0);
(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD為等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA,
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,
即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°
∵△AOB為等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
(3)成立,理由如下:
在AM上截取AN=OF,連EN.
∵A(4,4),
∴AE=OE=4,
又∵∠EAN=∠EOF=90°,AN=OF,
∴△EAN≌△EOF(SAS)
∴∠OEF=∠AEN,EF=EN,
又∵△EGH為等腰直角三角形,
∴∠GEH=45°,
即∠OEF+∠OEM=45°,
∴∠AEN+∠OEM=45°
又∵∠AEO=90°,
∴∠NEM=45°=∠FEM,
又∵EM=EM,
∴△NEM≌△FEM(SAS),
∴MN=MF,
∴AM-MF=AM-MN=AN,
∴AM-MF=OF,
即=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( )
A. 4 B. 3 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD、CE是△ABC的高,AF=BC,BE=3,AE=5.
(1)圖中有全等的三角形嗎?請(qǐng)找出來并加以證明;
(2)求線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC, ∠ABC=90 ,點(diǎn)E在BD上,點(diǎn)F在射線CD上,AE=EF,∠AEF=90 .
(1)若∠ABE=∠AEB,AG⊥BD,垂足為G,求證:BG=GE.
(2)在(1)的條件下,猜想線段CD與DF的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】威遠(yuǎn)人民商場(chǎng)準(zhǔn)備購進(jìn)甲、乙兩種牛奶進(jìn)行銷售,若甲種牛奶的進(jìn)價(jià)比乙種牛奶的進(jìn)價(jià)每件少5元,其用90元購進(jìn)甲種牛奶的數(shù)量與用100元購進(jìn)乙種牛奶的數(shù)量相同.
(1)求甲種牛奶、乙種牛奶的進(jìn)價(jià)分別是多少元?
(2)若該商場(chǎng)購進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,兩種牛奶的總數(shù)不超過95件,該商場(chǎng)甲種牛奶的銷售價(jià)格為49元,乙種牛奶的銷售價(jià)格為每件55元,則購進(jìn)的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(利潤=售價(jià)﹣進(jìn)價(jià))超過371元,請(qǐng)通過計(jì)算求出該商場(chǎng)購進(jìn)甲、乙兩種牛奶有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個(gè)數(shù)是( )
(1)a和0都是單項(xiàng)式
(2)多項(xiàng)式的次數(shù)是3
(3)單項(xiàng)式的系數(shù)是
(4)x2+2xy-y2可讀作x2、2xy、-y2的和
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于點(diǎn)O.
(1)AB的長為 ;
(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EF與AC相交于點(diǎn)G.
①求證:△ABE≌△ACF;
②判斷△AEF是哪一種特殊三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com