【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)D為邊AB的中點(diǎn).點(diǎn)P從點(diǎn)A出發(fā),沿AC方向以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度先沿CB方向運(yùn)動(dòng)到點(diǎn)B,再沿BA方向向終點(diǎn)A運(yùn)動(dòng),以DP、DQ為鄰邊構(gòu)造PEQD,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)設(shè)點(diǎn)Q到邊AC的距離為h,直接用含t的代數(shù)式表示h;
(2)當(dāng)點(diǎn)E落在AC邊上時(shí),求t的值;
(3)當(dāng)點(diǎn)Q在邊AB上時(shí),設(shè)PEQD的面積為S(S>0),求S與t之間的函數(shù)關(guān)系式;
(4)連接CD,直接寫出CD將PEQD分成的兩部分圖形面積相等時(shí)t的值.
【答案】(1)當(dāng)0<t≤時(shí),h=2t,當(dāng)<t≤4時(shí),h=;(2);(3)當(dāng)0≤t<時(shí),;當(dāng)<t≤4時(shí),;(4)t的值為或.
【解析】
(1)分點(diǎn)Q在線段BC,線段AB上兩種情形分別求解即可.
(2)利用平行線等分線段定理解決問(wèn)題即可.
(3)分點(diǎn)Q在線段BD,在線段AD上兩種情形分別求解即可.
(4)當(dāng)點(diǎn)E落在直線CD上時(shí),CD將PEQD分成的兩部分圖形面積相等.有兩種情形:①當(dāng)點(diǎn)E在CD上,且點(diǎn)Q在CB上時(shí) (如圖3所示),②當(dāng)點(diǎn)E在CD上,且點(diǎn)Q在AB上時(shí)(如圖4所示),分別求解即可解決問(wèn)題.
解:(1)當(dāng)0<t≤時(shí),h=2t.
當(dāng)<t≤4時(shí),h=3﹣(2t﹣3)=.
(2)當(dāng)點(diǎn)E落在AC邊上時(shí),DQ∥AC,
∵AD=DB,
∴CQ=QB,
∴2t=,
∴t=.
(3)①如圖1中,當(dāng)0≤t<時(shí),作PH⊥AB于H,則PH=PAsinA=﹣2t,
∴S=.
②如圖2中,當(dāng)<t≤4時(shí),同法可得.
(4)當(dāng)點(diǎn)E落在直線CD上時(shí),CD將PEQD分成的兩部分圖形面積相等.有兩種情形:
①當(dāng)點(diǎn)E在CD上,且點(diǎn)Q在CB上時(shí) (如圖3所示),
過(guò)點(diǎn)E作EG⊥CA于點(diǎn)G,過(guò)點(diǎn)D作DH⊥CB于點(diǎn)H,
易證Rt△PGE≌Rt△DHQ,
∴PG=DH=2,
∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣,
∵CD=AD,∴∠DCA=∠DAC
∴在Rt△CEG中,tan∠ECG=,
∴t=.
②當(dāng)點(diǎn)E在CD上,且點(diǎn)Q在AB上時(shí)(如圖4所示),過(guò)點(diǎn)E作EF⊥CA于點(diǎn)F,
∵CD=AD,∴∠CAD=∠ACD.
∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,
∴PF=PC=,PE=DQ=﹣2t,
∴在Rt△PEF中,cos∠EPF=,
∴t=綜上所述,滿足要求的t的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)過(guò)點(diǎn)E(8,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C、D在拋物線上,∠BAD的平分線AM交BC于點(diǎn)M,點(diǎn)N是CD的中點(diǎn),已知OA=2,且OA:AD=1:3.
(1)求拋物線的解析式;
(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長(zhǎng)的最小值;
(3)在x軸下方且在拋物線上是否存在點(diǎn)P,使△ODP中OD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)矩形ABCD不動(dòng),將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線KL平分矩形的面積時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)是直線上一動(dòng)點(diǎn),點(diǎn)是直線上動(dòng)點(diǎn),點(diǎn)是直線上一動(dòng)點(diǎn),且,.
(1)如圖1,當(dāng)點(diǎn),,分別在,,邊上時(shí),請(qǐng)你判斷線段,,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論;
(2)如圖2,當(dāng)在延長(zhǎng)線上,在延長(zhǎng)線上,在延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)判斷線段,,之間有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(3)若,當(dāng)時(shí),請(qǐng)直接寫出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,AD=AE,BD和CE相交于點(diǎn)O.
(1)求證:△ABD≌△ACE;
(2)判斷△BOC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是△ABC的邊AB上一點(diǎn),CE∥AB,DE交AC于點(diǎn)F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=5,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,則BC的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,點(diǎn)E在直線CD上,且DE=1,連接BE,作AF⊥BE于點(diǎn)H,交直線BC于點(diǎn)F,連接EF,則EF的長(zhǎng)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠的四臺(tái)機(jī)床同時(shí)生產(chǎn)直徑為的零件,為了了解產(chǎn)品質(zhì)量,質(zhì)量檢驗(yàn)員從這四臺(tái)機(jī)床生產(chǎn)的零件中分別隨機(jī)抽取50件產(chǎn)品,經(jīng)過(guò)檢測(cè)、整理、描述與分析,得到結(jié)果如下(單位:):
特征數(shù) 機(jī)床 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 9.99 | 9.99 | 10.00 | 0.02 |
乙 | 9.99 | 10.00 | 10.00 | 0.07 |
丙 | 10.02 | 10.01 | 10.00 | 0.02 |
丁 | 10.02 | 9.99 | 10.00 | 0.05 |
從樣本來(lái)看,生產(chǎn)的零件直徑更接近標(biāo)準(zhǔn)要求且更穩(wěn)定的機(jī)床是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com