已知等腰△ABC中,AD⊥BC于點(diǎn)D,且AD=BC,則△ABC底角的度數(shù)為( )
A.45° B.75° C.45°或75° D.60°
C.
詳解:根據(jù)題意畫出圖形,注意分別從∠BAC是頂角與∠BAC是底角去分析,然后利用等腰三角形與直角三角形的性質(zhì),即可求得答案:
如圖1:AB=AC,
∵AD⊥BC,∴BD=CD=BC,∠ADB=90°.
∵AD=BC,∴AD=BD. ∴∠B=45°.
即此時(shí)△ABC底角的度數(shù)為45°.
如圖2,AC=BC,
∵AD⊥BC,∴∠ADC=90°.
∵AD=BC,∴AD=AC,∴∠C=30°.∴∠CAB=∠B=(1800-∠A)÷2=75°.
即此時(shí)△ABC底角的度數(shù)為75°.
綜上所述,△ABC底角的度數(shù)為45°或75°.故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
九年級(1)班數(shù)學(xué)活動(dòng)選出甲、乙兩組各10名學(xué)生,進(jìn)行趣味數(shù)學(xué)答題比賽,共10題,答對題數(shù)統(tǒng)計(jì)如表一:
(表一)
答對題數(shù) | 5 | 6 | 7 | 8 | 9 | 10 |
甲組 | 1 | 0 | 1 | 5 | 2 | 1 |
乙組 | 0 | 0 | 4 | 3 | 2 | 1 |
(表二)
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲組 | 8 | 8 | 8 | 1.6 |
乙 | 8 | __________ | __________ | __________ |
(1)根據(jù)表一中統(tǒng)計(jì)的數(shù)據(jù),完成表二;
(2)請你從平均數(shù)和方差的角度分析,哪組的成績更好些?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的一元二次方程方程x2﹣2x+k=0有兩個(gè)不相等的實(shí)數(shù)解,則k的范圍是( )
A.k>0 B.k>1 C.k<1 D.k≤1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個(gè)不透明的布袋里裝有紅、黃、綠三種顏色的球(除顏色不同,其它均無任何區(qū)別),其中紅球2個(gè),黃球1個(gè),綠球1個(gè).
(1)求從袋中任意摸出一個(gè)球是紅球的概率;
(2)第一次從袋中任意摸出一個(gè)球,記下顏色后放回袋中,第二次再摸出一個(gè)球記下顏色,請用畫樹狀圖或列表的方法求兩次都摸到紅球的概率(兩個(gè)紅球分別記作紅1、紅2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,△ABC中,∠C=90°,學(xué)習(xí)等邊三角形時(shí),我們知道,如果∠A=30°,那么AB=2BC,由此我們猜想,如果AB=2BC,那么∠A=30°,請你利用軸對稱變換,證明這個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
題面:如圖,△ABC的邊BC的垂直平分線DE交△BAC的外角平分線AD于D,E為垂足,DF⊥AB于F,且AB>AC,求證:BF=AC+AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
按要求分別寫出一個(gè)大于9且小于10的無理數(shù):
(1)用一個(gè)平方根表示: ;
(2)用一個(gè)立方根表示: ;
(3)用含π的式子表示: ;
(4)用構(gòu)造的方法表示: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知點(diǎn)P位于y軸右側(cè),距y軸3個(gè)單位長度,位于x軸上方,距離x軸4個(gè)單位長度,則點(diǎn)P坐標(biāo)是 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABO的頂點(diǎn)A是雙曲線y1=與直線y2=﹣x﹣(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOC的面積.
(3)直接寫出使y1>y2成立的x的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com