【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過(guò)A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與AC交于另一點(diǎn)Q.
(i)若點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo);
(ii)取BC的中點(diǎn)N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2+2x﹣1(2)i:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣);ii:
【解析】
試題分析:(1)先求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式;
(2)i)首先求出直線AC的解析式和線段PQ的長(zhǎng)度,作為后續(xù)計(jì)算的基礎(chǔ).
若△MPQ為等腰直角三角形,則可分為以下兩種情況:
①當(dāng)PQ為直角邊時(shí):點(diǎn)M到PQ的距離為.此時(shí),將直線AC向右平移4個(gè)單位后所得直線(y=x﹣5)與拋物線的交點(diǎn),即為所求之M點(diǎn);
②當(dāng)PQ為斜邊時(shí):點(diǎn)M到PQ的距離為.此時(shí),將直線AC向右平移2個(gè)單位后所得直線(y=x﹣3)與拋物線的交點(diǎn),即為所求之M點(diǎn).
ii)由(i)可知,PQ=為定值,因此當(dāng)NP+BQ取最小值時(shí),有最大值.
如答圖2所示,作點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)B′,由分析可知,當(dāng)B′、Q、F(AB中點(diǎn))三點(diǎn)共線時(shí),NP+BQ最小,最小值為線段B′F的長(zhǎng)度.
試題解析:(1)∵等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3)
∴點(diǎn)B的坐標(biāo)為(4,﹣1).
∵拋物線過(guò)A(0,﹣1),B(4,﹣1)兩點(diǎn),
∴,解得:b=2,c=﹣1,
∴拋物線的函數(shù)表達(dá)式為:y=x2+2x﹣1.
(2)方法一:
i)∵A(0,﹣1),C(4,3),
∴直線AC的解析式為:y=x﹣1.
設(shè)平移前拋物線的頂點(diǎn)為P0,則由(1)可得P0的坐標(biāo)為(2,1),且P0在直線AC上.
∵點(diǎn)P在直線AC上滑動(dòng),∴可設(shè)P的坐標(biāo)為(m,m﹣1),
則平移后拋物線的函數(shù)表達(dá)式為:y=(x﹣m)2+m﹣1.
解方程組:,
解得,
∴P(m,m﹣1),Q(m﹣2,m﹣3).
過(guò)點(diǎn)P作PE∥x軸,過(guò)點(diǎn)Q作QF∥y軸,則
PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.
∴PQ==AP0.
若以M、P、Q三點(diǎn)為頂點(diǎn)的等腰直角三角形,則可分為以下兩種情況:
①當(dāng)PQ為直角邊時(shí):點(diǎn)M到PQ的距離為(即為PQ的長(zhǎng)).
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0為等腰直角三角形,且BP0⊥AC,BP0=.
如答圖1,過(guò)點(diǎn)B作直線l1∥AC,交拋物線y=x2+2x﹣1于點(diǎn)M,則M為符合條件的點(diǎn).
∴可設(shè)直線l1的解析式為:y=x+b1,
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,
∴直線l1的解析式為:y=x﹣5.
解方程組,得:,
∴M1(4,﹣1),M2(﹣2,﹣7).
②當(dāng)PQ為斜邊時(shí):MP=MQ=2,可求得點(diǎn)M到PQ的距離為.
如答圖2,取AB的中點(diǎn)F,則點(diǎn)F的坐標(biāo)為(2,﹣1).
由A(0,﹣1),F(xiàn)(2,﹣1),P0(2,1)可知:
△AFP0為等腰直角三角形,且點(diǎn)F到直線AC的距離為.
過(guò)點(diǎn)F作直線l2∥AC,交拋物線y=x2+2x﹣1于點(diǎn)M,則M為符合條件的點(diǎn).
∴可設(shè)直線l2的解析式為:y=x+b2,
∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,
∴直線l2的解析式為:y=x﹣3.
解方程組,得:,
∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).
綜上所述,所有符合條件的點(diǎn)M的坐標(biāo)為:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
方法二:
∵A(0,1),C(4,3),
∴lAC:y=x﹣1,
∵拋物線頂點(diǎn)P在直線AC上,設(shè)P(t,t﹣1),
∴拋物線表達(dá)式:,
∴lAC與拋物線的交點(diǎn)Q(t﹣2,t﹣3),
∵一M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形,P(t,t﹣1),
①當(dāng)M為直角頂點(diǎn)時(shí),M(t,t﹣3),,
∴t=1±,
∴M1(1+,﹣2),M2(1﹣,﹣2﹣),
②當(dāng)Q為直角頂點(diǎn)時(shí),點(diǎn)M可視為點(diǎn)P繞點(diǎn)Q順時(shí)針旋轉(zhuǎn)90°而成,
將點(diǎn)Q(t﹣2,t﹣3)平移至原點(diǎn)Q′(0,0),則點(diǎn)P平移后P′(2,2),
將點(diǎn)P′繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,則點(diǎn)M′(2,﹣2),
將Q′(0,0)平移至點(diǎn)Q(t﹣2,t﹣3),則點(diǎn)M′平移后即為點(diǎn)M(t,t﹣5),
∴,
∴t1=4,t2=﹣2,
∴M1(4,﹣1),M2(﹣2,﹣7),
③當(dāng)P為直角頂點(diǎn)時(shí),同理可得M1(4,﹣1),M2(﹣2,﹣7),
綜上所述,所有符合條件的點(diǎn)M的坐標(biāo)為:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
(ii)存在最大值.理由如下:
由(i)知PQ=為定值,則當(dāng)NP+BQ取最小值時(shí),有最大值.
如答圖2,取點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′,易得點(diǎn)B′的坐標(biāo)為(0,3),BQ=B′Q.
連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
∴四邊形PQFN為平行四邊形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′=.
∴當(dāng)B′、Q、F三點(diǎn)共線時(shí),NP+BQ最小,最小值為.
∴的最大值為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開展學(xué)生安全知識(shí)競(jìng)賽.現(xiàn)抽取部分學(xué)生的競(jìng)賽成績(jī)(滿分為100分,得分均為整數(shù))進(jìn)行統(tǒng)計(jì),繪制了圖中兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,回答下列問(wèn)題:
(1)a= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校共有2000名學(xué)生.若成績(jī)?cè)?/span>80分以上的為優(yōu)秀,請(qǐng)你估計(jì)該校成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為( 。
A. (﹣1,﹣2) B. (1,﹣2) C. (2,﹣1) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,D為半徑OA的中點(diǎn),過(guò)D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你們班的同學(xué)中有在同一個(gè)月出生的嗎?有在同月同日出生的嗎?你的同學(xué)在哪個(gè)月出生最多?做個(gè)小調(diào)查,看看會(huì)有什么有趣的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列成語(yǔ)所描述的事件是必然事件的是( 。
A. 水中撈月 B. 守株待兔 C. 水漲船高 D. 畫餅充饑
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6,AB=10,AB的垂直平分線DE交AB于點(diǎn)D,交BC于點(diǎn)E,則CE的長(zhǎng)等于_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com