【題目】如圖,AB是⊙O的直徑,且AB=6,點M為⊙O外一點,且MA,MC分別切⊙O于點A、C.點D是兩條線段BC與AM延長線的交點.
(1)求證:DM=AM;
(2)直接回答:
①當CM為何值時,四邊形AOCM是正方形?
②當CM為何值時,△CDM為等邊三角形?
【答案】(1)見解析;(2)①當CM=OA=3時,四邊形AOCM是正方形;②.
【解析】
(1)根據切線的性質得:MA⊥OA,MC⊥OC,證明△MAO≌△MAO(HL),得MC=MA,根據等邊對等角得:∠2=∠B,由等角的余角相等可得結論;
(2)①直接可得CM=OA=3;
②先根據等邊三角形定義可得:DM=CM,∠D=60°,證明Rt△OCM≌△OAM(HL),得CM=AM=DM,可得結論.
(1)連接OM,如圖1,
∵MA,MC分別切⊙O于點A、C,
∴MA⊥OA,MC⊥OC,
在Rt△MAO和Rt△MCO中,
MO=MO,AO=CO,
∴△MAO≌△MAO(HL),
∴MC=MA,
∵OC=OB,
∴∠OCB=∠B,
又∵∠DCM+∠OCB=90°,∠D+∠B=90°,
∴∠DCM=∠D,
∴DM=MC,
∴DM=MA;
(2)如圖2,
①當CM=OA=3時,四邊形AOCM是正方形;
②連接OM,如圖3,
∵△DCM是等邊三角形,
∴CM=DM,∠D=60°,
∵∠DAB=90°,
∴∠B=30°,
∴∠AOC=2∠B=60°,
∵AB=6,
∴tan∠B=tan30°==,
∴AD=2,
設CM=x,
∵OC=OA,OM=OM,
∴Rt△OCM≌△OAM(HL),
∴CM=AM=DM,
∴CM=AD=
科目:初中數(shù)學 來源: 題型:
【題目】已知頂點為(-3,-6)的拋物線經過點(-1,-4),下列結論中錯誤的是( )
A.
B. 若點(-2, ),(-5, ) 在拋物線上,則
C.
D. 關于的一元二次方程的兩根為-5和-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規(guī)定時間內可以多生產300個零件.
(1)求原計劃每天生產的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數(shù)比20個工人原計劃每天生產的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織“優(yōu)質課大賽”活動,經過評比有兩名男教師和兩名女教師獲得一等獎,學校將從這四名教師中隨機挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知△ABC中,CA=CB,CD⊥AB于D點,點M為線段AC上一動點,線段MN交DC于點N,且∠BAC=2∠CMN,過點C作CE⊥MN交MN延長線于點E,交線段AB于點F,探索的值.
(1)若∠ACB=90°,點M與點A重合(如圖1)時:①線段CE與EF之間的數(shù)量關系是 ;②= ;
(2)在(1)的條件下,若點M不與點A重合(如圖2),請猜想寫出的值,并證明你的猜想
(3)若∠ACB≠90°,∠CAB=,其他條件不變,請直接寫出的值(用含有的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)在推進村村通公路某項目建設中,計劃修建公路15千米.已知甲隊單獨完成修建公路所需得時間是乙隊得1.5倍,甲隊每天比乙隊少修0.5千米.
(1)求甲、乙兩隊單獨完成修建公路各需多少天?
(2)已知甲隊每天的工作費用是4000元,乙隊每天的工作費用是5000元,若該工程由甲乙兩隊合作完成,且工程的總費用不超過52000元,求乙隊至少要工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,.
(1)若,函數(shù)圖象與軸只有一個交點,求的值;
(2)若,,設點的橫坐標為,求證:;
(3)若,,問是否存在實數(shù),使得在時,隨的增大而增大?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地高速鐵路建設成功.試運行期間,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車同時出發(fā).設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關系,根據圖象分析出以下信息:①甲乙兩地相距1000千米;②動車從甲地到乙地共需要4個小時;③表示的實際意義是動車的速度;④普通列車的速度是千米/小時;⑤動車到達乙地停留2小時后返回甲地,在普通列車出發(fā)后7.5小時和動車再次相遇.以上信息正確的是( )
A.①②④B.①③④⑤C.①②④⑤D.②③⑤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com