【題目】已知直線y=2x+1.
(1)求已知直線與x軸、y軸的交點(diǎn)A、B的坐標(biāo);
(2)若直線y=kx+b與已知直線關(guān)于y軸對稱,求k與b的值.
【答案】(1)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;(2)k=-2,b=1.
【解析】
(1)令y=0,求出x值可得A點(diǎn)坐標(biāo),令x=0,求出y值可得B點(diǎn)坐標(biāo);
(2)根據(jù)兩直線關(guān)于y軸對稱,利用關(guān)于y軸對稱的點(diǎn)的坐標(biāo)特征:縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù)可知所求直線過點(diǎn)(0,1),(,0),進(jìn)而利用待定系數(shù)法,列解方程組,即可求出答案.
(1)當(dāng)時(shí),,
∴直線與軸交點(diǎn)的坐標(biāo)為,
當(dāng)時(shí),,
∴直線與軸交點(diǎn)的坐標(biāo)為;
(2)由(1)可知直線與兩坐標(biāo)軸的交點(diǎn)分別是,,
∵兩直線關(guān)于軸對稱,
∴直線y=kx+b過點(diǎn)(0,1),(,0),
∴,
∴k=-2,b=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別連接正方形對邊的中點(diǎn),能將正方形劃分成四個(gè)面積相等的小正方形用上述方法對一個(gè)邊長為1的正方形進(jìn)行劃分,第1次劃分得到圖1,第2次劃分圖2,則第3次劃分得到的圖中共有______個(gè)正方形,借助劃分得到的圖形,計(jì)算的結(jié)果為______(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點(diǎn)為B.AC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CE丄AB,交AB的延長線于點(diǎn)E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn)、、分別是、、的中點(diǎn),、交于,連接、.下列結(jié)論:①;②;③;④.正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.
下列判斷:
①當(dāng)x>0時(shí),y1>y2;
②當(dāng)x<0時(shí),x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買10 臺污水處理設(shè)備,現(xiàn)有A、B兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如下表:
經(jīng)調(diào)查:購買-臺A型設(shè)備比購買一-臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買4臺B型設(shè)備少4萬元.
(1)求a、b的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過47萬元,并且該月要求處理西太湖的污水量不低于1860 噸,則有哪幾種購買方案?請指出最省錢的一種購買方案,并指出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人想共同承包一項(xiàng)工程,甲單獨(dú)做30天完成,乙單獨(dú)做20天完成,合同規(guī)定15天完成,否則每超過1天罰款1 000元,甲、乙兩人經(jīng)商量后簽訂了該合同.
(1)正常情況下,甲、乙兩人能否履行該合同?為什么?
(2)現(xiàn)兩人合作了這項(xiàng)工程的75%,因別處有急事,必須調(diào)走1人,問調(diào)走誰更合適些?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在表盤上12:00時(shí),時(shí)針、分針都指向數(shù)字12,我們將這一位置稱為“標(biāo)準(zhǔn)位置”(圖中).小文同學(xué)為研究12點(diǎn)分()時(shí),時(shí)針與分針的指針位置,將時(shí)針記為,分針記為.如:12:30時(shí),時(shí)針、分針的位置如圖2所示,試解決下列問題:
(1)分針每分鐘轉(zhuǎn)動 °;時(shí)針每分鐘轉(zhuǎn)動 °;
(2)當(dāng)與在同一直線上時(shí),求的值;
(3)當(dāng)、、兩兩所夾的三個(gè)角、、中有兩個(gè)角相等時(shí),試求出所有符合條件的的值.(本小題中所有角的度數(shù)均不超過180°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線上一點(diǎn)為端點(diǎn)作射線,使,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)處(注:)
如圖①,若直角三角板的一邊放在射線上,則 .
如圖②,將直角三角板繞點(diǎn)逆時(shí)針方向轉(zhuǎn)動到某個(gè)位置,若恰好平分,求的度數(shù);
如圖③,將直角三角板繞點(diǎn)轉(zhuǎn)動,如果始終在的內(nèi)部,試猜想與有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com