【題目】如圖,直線a∥b,直線l與a、b分別相交于A,B兩點,過點A作直線l的垂線交直線b于點C,若∠1=58°,則∠2的度數(shù)為( )
A.58°
B.42°
C.32°
D.28°
【答案】C
【解析】解:∵直線a∥b,
∴∠ACB=∠2,
∵AC⊥BA,
∴∠BAC=90°,
∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,
所以答案是:C.
【考點精析】根據(jù)題目的已知條件,利用平行線的性質(zhì)和三角形的內(nèi)角和外角的相關(guān)知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算與因式分解:
(1)計算:
①;②(﹣2x﹣y)(y﹣2x)﹣(2x+y)2;
(2)因式分解:
①2x2﹣4x+2;②a2(x﹣y)+9b2(y﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是A,B,C,D三點,按如下步驟作圖:①先分別以A,B兩點為圓心,以大于 AB的長為半徑作弧,兩弧相交于M、N兩點,作直線MN;②再分別以B,C兩點為圓心,以大于 的長為半徑作弧,兩弧相交于G,H兩點,作直線GH,GH與MN交于點P,若∠BAC=66°,則∠BPC等于( )
A.100°
B.120°
C.132°
D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組想測量一座大樓AB的高度.如圖,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1: .在離C點40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,O為直線AB上一點,∠DOE=90°.
(1)如圖1,若∠AOC=130°,OD平分∠AOC.
①求∠BOD的度數(shù);
②請通過計算說明OE是否平分∠BOC.
(2)如圖2,若∠BOE:∠AOE=2:7,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點P在AD邊上以每秒1cm的速度從點A向點D運(yùn)動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運(yùn)動,兩個點同時出發(fā),當(dāng)點P到達(dá)點D時停止(同時點Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC內(nèi)有一個點P1,當(dāng)P1、A、B、C沒有任何三點在同一直線上時,如圖1,可構(gòu)成3個互不重疊的小三角形;若△ABC內(nèi)有兩個點P1、P2,其它條件不變,如圖2,可構(gòu)成5個互不重疊的小三角形:……若△ABC內(nèi)有n個點,其它條件不變,則構(gòu)成若干個互不重疊的小三角形,這些小三角形的內(nèi)角和為()
A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com