【題目】拋物線的對稱軸是直線,且過點,頂點位于第二象限,其部分圖象如圖所示,給出以下判斷;①且;②;③;④;⑤直線與拋物線兩個交點的橫坐標分別為,則.其中結論正確是___________.
科目:初中數學 來源: 題型:
【題目】綜合與探究
如圖,拋物線與軸交于兩點,與軸交于點,且點是的平分線與拋物線的交點.
求拋物線的解析式及點的坐標;
點在平面直角坐標系內,且以點為頂點的四邊形是平行四邊形,請直接寫出滿足條件的點的坐標.
若點是直線上方拋物線上的一個動點,且點的橫坐標為請寫出的面積與之間的關系式,并求出為何值時,的面積有最大值,最大值為多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,學校教學樓的后面有一棟宿舍樓,當光線與地面的夾角是時,教學樓在宿舍樓的墻上留下高的影子,而當光線與地面夾角是時,教學樓頂在地面上的影子與墻角有的距離(,,在一條直線上).則教學樓的高度為________.(結果精確到,參考數據:,,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店以固定進價一次性購進一種商品,7月份按一定售價銷售,銷售額為120000元,為擴大銷量,減少庫存,8月份在7月份售價基礎上打8折銷售,結果銷售量增加40件,銷售額增加8000元.
(1)求該商店7月份這種商品的售價是多少元?
(2)如果該商品的進價為750元,那么該商店7月份銷售這種商品的利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下表:
序號 | 1 | 2 | 3 | … |
圖形 | … |
我們把某格中字母和所得到的多項式稱為特征多項式,例如:
第1格的“特征多項式”為;
第2格的“特征多項式”為.
回答下列問題:
(1)第3格的“特征多項式”為________________,
第4格的“特征多項式”為______________________,
第格的“特征多項式”為___________________;
(2)若第1格的“特征多項式”的值為,第2格的“特征多項式”的值為,求的值;
(3)在(2)的條件下,第格的特征多項式的值為,則直接寫出的值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊中,延長至點,延長交的中垂線于點,連接,.
(1)如圖1,若,,求的長;
(2)如圖2,連接交于點,在上取一點,連接交于點,且,求證:;
(3)在(2)的條件下,若直接寫出線段,,的等量關系
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種雜交柑橘新品種,皮薄汁多,口感細嫩,風味極佳,深受怎么喜愛,某果農種植銷售過程中發(fā)現,這種柑橘的種植成本為6元/千克,日銷量與銷售單價(元)之間存在一次函數關系,如圖所示
(1)求與之間的函數關系式
(2)該果農每天銷售這種柑橘不低于60千克且不超過150千克,試求其銷售單價定為多少時,除去種植成本后,每天銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某事業(yè)單位組織全體職工參加了“抗擊疫情,服務社會”的活動為了了解單位職工參加活動情況,從單位職工中隨機抽取部分職工進行調查,統(tǒng)計了該天他們打掃街道、去敬老院服務和社區(qū)文藝演出的人數,并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據兩幅統(tǒng)計圖中的信息,回答下列問題:
本次抽樣調查共抽取了多少名單位職工?
通過計算補全條形統(tǒng)計圖;
若該事業(yè)單位共有名職工,請你估計該單位去敬老院的職工有多少名.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com