【題目】五一節(jié),小麗獨自一人去老家玩,家住在車站附近的姑姑到車站去接小麗.因為擔(dān)心小麗下車后找不到路,姑姑一路小跑來到車站,結(jié)果客車晚點,休息一陣后,姑姑接到小麗,和小麗一起慢慢的走回了家.下列圖象中,能反映以上過程中小麗姑姑離家的距離s與時間t的關(guān)系的大致圖象是( )
A.
B.
C.
D.

【答案】A
【解析】解:姑姑在車站休息的一段時間,路程不隨時間的變化而變化,因而這一段的圖象應(yīng)該平行于橫軸;
姑姑一路小跑來到車站,這段是正比例函數(shù)關(guān)系,回家的過程是一次函數(shù)關(guān)系,且s歲t的增大而減小,因而B、D錯誤;
回家的過程比姑姑一路小跑來到車站的過程速度要慢,即s隨t的變化要慢,因而圖象要平緩,故A正確,C錯誤.
故選A.
【考點精析】掌握函數(shù)的圖象是解答本題的根本,需要知道函數(shù)的圖像是由直角坐標(biāo)系中的一系列點組成;圖像上每一點坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:
(1)已知:如圖1,在正方形ABCD中,點E、H分別在BC、AB上,若AE⊥DH于點O,求證AE=DH;

類比探究:
(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由;
拓展應(yīng)用:
(3)已知,如圖3,在(2)問條件下,若BC=4,E為BC的中點,AF= AD,求HG的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中,錯誤的有(  )

①在Rt△ABC中,已知兩邊長分別為3和4,則第三邊的長為5;②△ABC的三邊長分別為a,b,c,若a2+b2=c2,則∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,則△ABC是直角三角形;④若三角形的三邊長之比為3∶4∶5,則該三角形是直角三角形.

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D是BC上的一點,AB=10,BD=6,AD=8,AC=17.

(1)判斷AD與BC的位置關(guān)系,并說明理由;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對x,y定義一種新運算T,規(guī)定: (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如: ,已知T(1,﹣1)=﹣2,T(4,2)=1
(1)求a,b的值;
(2)若關(guān)于m的不等式組 恰好有4個整數(shù)解,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你認(rèn)為月球上有水嗎?如圖是對某中學(xué)八年級的140名男生的調(diào)查結(jié)果.

(1)認(rèn)為“有水”的頻數(shù)為________,認(rèn)為“沒有水”的頻數(shù)是_______,認(rèn)為“不知道”的頻數(shù)是_______;

(2)認(rèn)為“有水”的頻率為_______,認(rèn)為“沒有水”的頻率是______,認(rèn)為“不知道”的頻率是_______,頻率之和為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5x軸交于點D,直線y=-xx軸及直線x=-5分別交于點C,E.B,E關(guān)于x軸對稱,連接AB.

(1)求點C,E的坐標(biāo)及直線AB的解析式;

(2)SSCDES四邊形ABDO,求S的值;

(3)在求(2)S時,嘉琪有個想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉(zhuǎn)化為直接求AOC的面積,如此不更快捷嗎?但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)SAOCS,請通過計算解釋他的想法錯在哪里.

查看答案和解析>>

同步練習(xí)冊答案