【題目】綜合與探究
如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),OA=2,OC=6,連接AC和BC.
(1)求拋物線的解析式;
(2)點(diǎn)D在拋物線的對(duì)稱軸上,當(dāng)△ACD的周長(zhǎng)最小時(shí),點(diǎn)D的坐標(biāo)為 .
(3)點(diǎn)E是第四象限內(nèi)拋物線上的動(dòng)點(diǎn),連接CE和BE.求△BCE面積的最大值及此時(shí)點(diǎn)E的坐標(biāo);
(4)若點(diǎn)M是y軸上的動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=x2﹣x﹣6;(2)(,﹣5);(3)點(diǎn)E坐標(biāo)為(,﹣)時(shí),△BCE面積最大,最大值為;(4)存在點(diǎn)N,點(diǎn)N坐標(biāo)為(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).
【解析】
(1)用待定系數(shù)法求解;
(2)當(dāng)點(diǎn)B、D、C在同一直線上時(shí),C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小;求出直線BC:y=2x﹣6,可進(jìn)一步求解;
(3)過點(diǎn)E作EG⊥x軸于點(diǎn)G,交直線BC與點(diǎn)F,設(shè)E(t,t2﹣t﹣6)(0<t<3),則F(t,2t﹣6),得EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t,S△BCE=S△BEF+S△CEF=﹣(t﹣)2+,可得結(jié)果;
(4)存在點(diǎn)N,使以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形是菱形.可分情況若AC為菱形的邊長(zhǎng),MN∥AC且,MN=AC=2;若AC為菱形的對(duì)角線,則AN4∥CM4,AN4=CN4,N4(﹣2,n),由勾股定理可求n.
(1)∵OA=2,OC=6
∴A(﹣2,0),C(0,﹣6)
∵拋物線y=x2+bx+c過點(diǎn)A、C
∴
解得:
∴拋物線解析式為y=x2﹣x﹣6
(2)∵當(dāng)y=0時(shí),x2﹣x﹣6=0,解得:x1=﹣2,x2=3
∴B(3,0),拋物線對(duì)稱軸為直線x=
∵點(diǎn)D在直線x=上,點(diǎn)A、B關(guān)于直線x=對(duì)稱
∴xD=,AD=BD
∴當(dāng)點(diǎn)B、D、C在同一直線上時(shí),C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小
設(shè)直線BC解析式為y=kx﹣6
∴3k﹣6=0,解得:k=2
∴直線BC:y=2x﹣6
∴yD=2×﹣6=﹣5
∴D(,﹣5)
故答案為:(,﹣5)
(3)過點(diǎn)E作EG⊥x軸于點(diǎn)G,交直線BC與點(diǎn)F
設(shè)E(t,t2﹣t﹣6)(0<t<3),則F(t,2t﹣6)
∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t
∴S△BCE=S△BEF+S△CEF=EFBG+EFOG=EF(BG+OG)=EFOB=×3(﹣t2+3t)=﹣(t﹣)2+
∴當(dāng)t=時(shí),△BCE面積最大
∴yE=()2﹣﹣6=﹣
∴點(diǎn)E坐標(biāo)為(,﹣)時(shí),△BCE面積最大,最大值為.
(4)存在點(diǎn)N,使以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形是菱形.
∵A(﹣2,0),C(0,﹣6)
∴AC=
①若AC為菱形的邊長(zhǎng),如圖3,
則MN∥AC且,MN=AC=2
∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)
②若AC為菱形的對(duì)角線,如圖4,則AN4∥CM4,AN4=CN4
設(shè)N4(﹣2,n)
∴﹣n=
解得:n=﹣
∴N4(﹣2,﹣)
綜上所述,點(diǎn)N坐標(biāo)為(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航模小組用無人機(jī)來測(cè)量建筑物BC的高度,無人機(jī)從A處測(cè)得建筑物頂部B的仰角為45°,測(cè)得底部C的俯角為60°,若此時(shí)無人機(jī)與該建筑物的水平距離AD為30m,則該建筑物的高度BC為_____m.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省煙臺(tái)市)某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形, M為三角形外任意一點(diǎn),把△ABM繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°到△CAN的位置.
(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長(zhǎng).
(2)如圖②,若∠BMC = n°,試寫出AM、BM、CM之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=5,E,F分別是AB,AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BP交CE于點(diǎn)D,∠CBP的平分線交CE于點(diǎn)Q,當(dāng)CQ=CE時(shí),EP+BP的值為( )
A.10B.8C.6D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過O、A(4,0)、B(5,5)三點(diǎn),直線l交拋物線于點(diǎn)B,交y軸于點(diǎn)C(0,﹣4).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P關(guān)于直線OB的對(duì)稱點(diǎn)恰好落在直線l上,求點(diǎn)P的坐標(biāo);
(3)M是線段OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作直線MN⊥x軸,交拋物線于點(diǎn)N.當(dāng)以M、N、B為頂點(diǎn)的三角形與△OBC相似時(shí),直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD被分割成兩個(gè)小梯形①②,和一個(gè)小正方形③,去掉③后,①和②可剪拼成一個(gè)新的梯形,若EF﹣AD=2,BC﹣EF=1,則AB的長(zhǎng)是( )
A.6B.3C.9D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,順次連接各邊中點(diǎn)得正方形A1B1C1D1,又依次連接正方形A1B1C1D1各邊中點(diǎn)得正方形A2B2C2D2,以此規(guī)律已知作下去,那么正方形A8B8C8D8的周長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com