【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】分析:如圖,由ABC平移得到MNL可知AM、BN、CL是對(duì)應(yīng)點(diǎn),根據(jù)平移的特征得:AMBNCLAM=BN=CL,ABCMNL的形狀、大小完全相同.從而進(jìn)行判斷即可.

詳解:根據(jù)平移前后連接對(duì)應(yīng)點(diǎn)的線段平行且相等可知:

AMBN正確,AM=BN正確;

根據(jù)平移前后ABCMNL的形狀、大小完全相同可知

BC=NL、∠ACB=∠MLN,所以:BC=ML錯(cuò)誤,④∠ACB=∠MNL錯(cuò)誤.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′C′分別是B、C的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的△A′B′C′,并求△A′B′C′的面積;

2)若連接AA′CC′,則這兩條線段之間的關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是某汽車行駛的路程S(km)與時(shí)間t(min)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問題:

1)汽車在前9分鐘內(nèi)的平均速度是多少?

2)汽車在中途停了多長(zhǎng)時(shí)間?

3當(dāng)16≤t≤30時(shí),求St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過15(15)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過15噸時(shí),超過部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi).小明家1月份用水23噸,交水費(fèi)35元,2月份用水19噸,交水費(fèi)25元.

(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)與市場(chǎng)調(diào)節(jié)價(jià)分別是多少;

(2)小明家3月份用水24噸,他家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C:y=x2經(jīng)過變化可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交與點(diǎn)A1 , 且其對(duì)稱軸分別交拋物線C,C1于點(diǎn)B1 , D1 , 此時(shí)四邊形OB1A1D1恰為正方形;按上述類似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交與點(diǎn)A2 , 且其對(duì)稱軸分別交拋物線C1 , C2于點(diǎn)B2 , D2 , 此時(shí)四邊形OB2A2D2也恰為正方形;按上述類似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3 . 請(qǐng)?zhí)骄恳韵聠栴}:

(1)填空:a1= , b1=
(2)求出C2與C3的解析式;
(3)按上述類似方法,可得到拋物線Cn:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1).
①請(qǐng)用含n的代數(shù)式直接表示出Cn的解析式;
②當(dāng)x取任意不為0的實(shí)數(shù)時(shí),試比較y2015與y2016的函數(shù)值的大小并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據(jù)是__________________________;

(2)如果∠3=∠D,那么______________,根據(jù)是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(-1,3)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請(qǐng)?zhí)羁?/span>.

解:∵OA⊥OB(已知)

所以_____=90°________

因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代換)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

同步練習(xí)冊(cè)答案