【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是某汽車行駛的路程S(km)與時(shí)間t(min)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內(nèi)的平均速度是多少?
(2)汽車在中途停了多長(zhǎng)時(shí)間?
(3)當(dāng)16≤t≤30時(shí),求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過15噸(含15噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過15噸時(shí),超過部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi).小明家1月份用水23噸,交水費(fèi)35元,2月份用水19噸,交水費(fèi)25元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)與市場(chǎng)調(diào)節(jié)價(jià)分別是多少;
(2)小明家3月份用水24噸,他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線C:y=x2經(jīng)過變化可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交與點(diǎn)A1 , 且其對(duì)稱軸分別交拋物線C,C1于點(diǎn)B1 , D1 , 此時(shí)四邊形OB1A1D1恰為正方形;按上述類似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交與點(diǎn)A2 , 且其對(duì)稱軸分別交拋物線C1 , C2于點(diǎn)B2 , D2 , 此時(shí)四邊形OB2A2D2也恰為正方形;按上述類似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3 . 請(qǐng)?zhí)骄恳韵聠栴}:
(1)填空:a1= , b1=;
(2)求出C2與C3的解析式;
(3)按上述類似方法,可得到拋物線Cn:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1).
①請(qǐng)用含n的代數(shù)式直接表示出Cn的解析式;
②當(dāng)x取任意不為0的實(shí)數(shù)時(shí),試比較y2015與y2016的函數(shù)值的大小并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)如果∠1=∠B,那么_______∥_______,根據(jù)是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根據(jù)是__________________________;
(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(-1,3)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請(qǐng)?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com