【題目】如圖,在等腰直角三角形ABC中,,,DAB的中點,E、F分別是AC、BC上的點(點E不與端點A、C重合),連接EF并取EF的中點O,連接DO并延長至點G,使,連接DEGE、GF.

1)求證:四邊形EDFG是平行四邊形;

2)若,探究四邊形EDFG的形狀?

3)在(2)的條件下,當E點在何處時,四邊形EDFG的面積最小,并求出最小值.

【答案】1)詳見解析;(2)詳見解析;(3)當E點在AC中點時,四邊形EDGF的面積最小為4.

【解析】

1)根據(jù)對角線互相平分的四邊形是平行四邊形可得結論;

2)連接CD,根據(jù)等腰直角三角形的性質可得出∠A=∠DCF45°、ADCD,結合AECF可證出△ADE≌△CDFSAS),根據(jù)全等三角形的性質可得出DEDF、ADE=∠CDF,通過角的計算可得出∠EDF90°,再根據(jù)(1)中的結論,由此即可證出四邊形EDFG是正方形;

3)過點DDE′⊥ACE′,根據(jù)等腰直角三角形的性質可得出DE′的長度,從而得出2DE2,再根據(jù)正方形的面積公式即可得出四邊形EDFG的面積的最小值.

1)證明:∵OEF的中點,

OEOF

OGOD,

∴四邊形EDFG是平行四邊形;

2)解:四邊形EDFG是正方形,理由是:

連接CD,如圖1所示,

∵△ABC為等腰直角三角形,∠ACB90°,DAB的中點,

∴∠A=∠DCF45°,ADCD

在△ADE和△CDF中,

,

∴△ADE≌△CDFSAS),

DEDF,∠ADE=∠CDF

∵∠ADE+∠EDC90°,

∴∠EDC+∠CDF=∠EDF90°,

由(1)知:四邊形EDFG是平行四邊形;

∴四邊形EDFG是正方形;

3)解:過點DDE′⊥ACE′,如圖2所示.

∵△ABC為等腰直角三角形,∠ACB90°,ACBC4

DE′=BC2,AB4,點E′為AC的中點,

2DE2(點E與點E′重合時取等號).

4S四邊形EDFGDE28

∴當點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有下列說法:其中正確的個數(shù)是(

(1)有一個角為60°的等腰三角形是等邊三角形;

(2)三角之比為3:4:5的三角形為直角三角形;

(3)等腰三角形的兩條邊長為2,4,則等腰三角形的周長為10;

(4)一邊上的中線等于這邊長的一半的三角形是等邊三角形;

A.2B.3C.4D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)平面上有四個點AB,C,D,按照以下要求作圖:

作直線AD;

作射線CB交直線AD于點E

連接AC,BD交于點F;

(2)圖中共有 條線段;

(3)若圖中FAC的一個三等分點,AFFC,已知線段AC上所有線段之和為18,求AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鹽城市某校開展了向貧困山區(qū)捐贈圖書活動.全校2000名學生每人都捐贈了一定數(shù)量的圖書,已知各年級人數(shù)分布的扇形統(tǒng)計圖如圖①所示.學校為了了解各年級捐贈圖書情況,從各年級中隨機抽查了部分學年生,進行捐贈圖書情況的統(tǒng)計,繪制成如圖②的頻數(shù)分布直方圖.根據(jù)以上信息解答下列問題:

1)人均捐贈圖書最多的是 年級;

2)估計該校九年級學生共捐贈圖書多少冊?

3)全校大約共捐贈圖書多少冊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,的中點,連接并延長,交于點恰好是的中點.

(1)求的值;

(2)若求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線過點,且與函數(shù)的圖象相交于兩點,與軸、軸分別交于點,如圖所示,四邊形均為矩形,且矩形的面積為.

(1)求的值;

(2)當點的橫坐標為時,求直線的解析式及線段的長;

(3)如圖是小芳同學對線段的長度關系的思考示意圖.記點的橫坐標為,已知當時,線段的長隨的增大而減小,請你參考小芳的示意圖判斷:當時,線段的長隨的增大而 . (填“增大”、“減小”或“不變”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,ACBD交于點OECD延長線上的一點,且CDDE,連結BE分別交AC,AD于點F、G,連結OG,則下列結論:①OGAB;②與EGD全等的三角形共有5個;③S四邊形ODGFSABF;④由點A、B、D、E構成的四邊形是菱形.其中正確的是( 。

A.①④B.①③④C.①②③D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會的重要交通保障設施. 如圖所示,京張高鐵起自北京北站,途經(jīng)清河、沙河、呂平等站,終點站為張家口南站,全長174千米.

1)根據(jù)資料顯示,京張高鐵的客運價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結果精確到個位);

2)京張高鐵建成后,將是世界上第一條設計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設計時速運行,那么每站(不計起始站和終點站)?康钠骄鶗r間是多少分鐘?(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動.將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,ADAE在同一條直線上,ABAG在同一條直線上.

(1)小明發(fā)現(xiàn)DG=BEDGBE,請你給出證明.

(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時△ADG的面積.

查看答案和解析>>

同步練習冊答案