【題目】草莓是種老少皆宜的食品,深受市民歡迎.今年3月份,甲,乙兩超市分別用3000元以相同的進價購進質量相同的草莓.甲超市銷售方案是:將草莓按大小分類包裝銷售,其中大草莓400千克,以進價的2倍價格銷售,剩下的小草莓以高于進價的10%銷售.乙超市銷售方案是:不將草莓按大小分類,直接包裝銷售,價格按甲超市大、小兩種草莓售價的平均數(shù)定價.若兩超市將草莓全部售完,其中甲超市獲利2100元(其他成本不計).

1)草莓進價為每千克多少元?

2)乙超市獲利多少元?并比較哪種銷售方式更合算.

【答案】1)草莓進價為每千克5元;(2)甲超市銷售方式更合算.

【解析】

1)先設草莓進價為每千克x元,根據兩超市將草莓全部售完,其中甲超市獲利2100元列出方程,求出x的值,再進行檢驗即可求出答案;

2)根據(1)求出每個超市草莓總量,再根據大、小草莓售價分別為10元和5.5元,求出乙超市獲利,再與甲超市獲利2100元相比較即可.

1)設草莓進價為每千克.

由題意,得,

解得.

經檢驗是原方程的根.

答:草莓進階為每千克5.

2)由(1)知:每個超市草莓總量:(千克),

大、小草莓售價分別為10元和5.5.

乙超市獲利:(元).

甲超市獲利,甲超市銷售方式更合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P上一動點,連接AP,作∠APC=45°,交弦AB于點CAB=6cm

小元根據學習函數(shù)的經驗,分別對線段APPC,AC的長度進行了測量.

下面是小元的探究過程,請補充完整:

1)下表是點P上的不同位置,畫圖、測量,得到線段AP,PC,AC長度的幾組值,如下表:

AP/cm

0

1.00

2.00

3.00

4.00

5.00

6.00

PC/cm

0

1.21

2.09

2.69

m

2.82

0

AC/cm

0

0.87

1.57

2.20

2.83

3.61

6.00

①經測量m的值是 (保留一位小數(shù)).

②在AP,PC,AC的長度這三個量中,確定的長度是自變量,的長度和 的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)圖象;

3)結合函數(shù)圖象,解決問題:當ACP為等腰三角形時,AP的長度約為 cm(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在RtABC中∠C90°,兩條直角邊長分別為a,b,斜邊長為c.如圖②,現(xiàn)將與RtABC全等的四個直角三角形拼成一個正方形EFMN

1)根據勾股定理的知識,請直接寫出a,b,c之間的數(shù)量關系;

2)若正方形EFMN的面積為64,RtABC的周長為18,求RtABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展黃梅戲演唱比賽,組委會將本次比賽的成績(單位:分)進行整理,并繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整)

請你根據圖表提供的信息,解答下列問題:

1)求出a,b的值并補全頻數(shù)分布直方圖.

2)將此次比賽成績分為三組:A50x60B60x80;C80x100.若按照這樣的分組方式繪制扇形統(tǒng)計圖,則其中C組所在扇形的圓心角的度數(shù)是多少?

3)學校準備從不低于90分的參賽選手中任選2人參加市級黃梅戲演唱比賽,求都取得了95分的小欣和小怡同時被選上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果拋物線C1的頂點在拋物線C2上,拋物線C2的頂點也在拋物線C1上,那么我們稱拋物線C1C2為“互相關聯(lián)”的拋物線.如圖,已知拋物線是“互相關聯(lián)”的拋物線,點A,B分別是拋物線C1C2的頂點,拋物線C2經過點D6,-1.

1)直接寫出點A,B的坐標和拋物線C2的解析式.

2)拋物線C2上是否存在點E,使得ABE是以AB為直角邊的直角三角形?如果存在,請求出點E的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,弓形中,,.若點在優(yōu)弧上由點移動到點,記的內心為,點隨點的移動所經過的路徑長為( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實施校園文化公園化戰(zhàn)略,提升校園文化品位,在“回贈母校一棵樹”活動中.武漢某中學準備在校園內空地上種植桂花樹、香樟樹、柳樹、木棉樹,為了解學生喜愛的樹種情況,隨機調查了該校部分學生,并將調查結果整理后制成了如圖統(tǒng)計圖

請你根據統(tǒng)計圖提供的信息,解答以下問題:

1)接受問卷調查的學生共有 名,扇形統(tǒng)計圖中“喜歡香樟樹”部分所對應扇形的圓心角為 ,請補全條形統(tǒng)計圖;

2)若該校共有900人,請根據上述調查結果,估計該校學生中喜歡桂花樹和木棉樹的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)的圖象與軸分別交于點、,且過點.

1)求二次函數(shù)表達式;

2)若點為拋物線上第一象限內的點,且,求點的坐標;

3)在拋物線上(下方)是否存在點,使?若存在,求出點軸的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

同步練習冊答案