【題目】如圖,M為線(xiàn)段AB的中點(diǎn),AE與BD交于點(diǎn)C,,且DM交AC于F,ME交BC于點(diǎn)G.
(1)寫(xiě)出圖中相似三角形,并證明其中的一對(duì);
(2)請(qǐng)連結(jié)FG,如果,,,求BG、FG的長(zhǎng).
【答案】(1)△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM,證明見(jiàn)解析;(2)BG=,FG=.
【解析】
(1)根據(jù)已知條件,∠DME=∠A=∠B=,結(jié)合圖形上的公共角,即可推出△DMG∽△DBM,△EMF∽△EAM,AMF∽△BGM;
(2)根據(jù)相似三角形的性質(zhì),推出BG的長(zhǎng)度,依據(jù)銳角三角函數(shù)推出AC的長(zhǎng)度,即可求出CG、CF的長(zhǎng)度,繼而推出FG的長(zhǎng)度.
(1)△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM,
∵∠AMD=∠B+∠D,∠BGM=∠DMG+∠D
又∠B=∠A=∠DME=
∴∠AMF=∠BGM,
∴△AMF∽△BGM,
(2)當(dāng)=45°時(shí),可得AC⊥BC且AC=BC,
∵M為AB的中點(diǎn),
∴AM=BM=2,
∵∠DME=∠A=∠B=,∠FMB是△AFM的外角,
∴∠FMB=∠A+∠AFM=∠DME+∠GMB,
∴∠AFM=∠GMB,
∴△AMF∽△BGM,
∴
∴BG===,AC=BC=4cos45°=4,
∴CG=4=,CF=43=1,
∴FG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,則四邊形ABCD的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)G,CE的延長(zhǎng)線(xiàn)交DA的延長(zhǎng)線(xiàn)于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線(xiàn)段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)后得到,且為的中點(diǎn),與相交于,若,則線(xiàn)段的長(zhǎng)度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2-bx的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)切圓⊙O與BC,CA,AB分別相切于點(diǎn)D,E.F.且AB=5,AC=12,BC=13,則⊙O的半徑是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:點(diǎn)A、B、C、D為⊙O上的四等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿O﹣C﹣D﹣O的路線(xiàn)做勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,∠APB的度數(shù)為y.則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵ā 。?/span>
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線(xiàn)的解析式;
(2)如圖①,若點(diǎn)D是拋物線(xiàn)上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線(xiàn)上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com