【題目】我們用[a]表示不大于a的最大整數(shù),例如:[3.5]3,[4]4,[1.5]=-2;用{a}表示大于a的最小整數(shù),例如:{3.5}4,{1}2,{2.5}=-2.解決下列問題:

(1)[5.5]等于多少,{2.5}等于多少;

(2)[x]3,寫出x的取值范圍;若{y}=-2,寫出y的取值范圍.

(3)已知x,y滿足方程組,求xy的取值范圍.

【答案】(1) [5.5]=-6,{2.5}3;(2) 3≤x4;-3≤y<-2;(3)1≤x0,0≤y1.

【解析】

(1)根據(jù)已知定義分別得出[5.5]{2.5}的值;

(2)利用[a]用表示不大于a的最大整數(shù),{a}表示大于a的最小整數(shù),進而得出xy的取值范圍;

(3)首先解方程組,進而得出x、y的取值范圍.

(1)[a]用表示不大于a的最大整數(shù),∴[5.5]=-6,

{a}表示大于a的最小整數(shù),∴{2.5}3.故答案為-6,3;

(2)[x]3,∴x的取值范圍是3≤x4;

{y}=-2,∴y的取值范圍是-3≤y<-2;

故答案為3≤x4;-3≤y<-2;

(3)解得則-1≤x0,0≤y1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明到某超市購買A、B、C三種商品.其中A、B兩種商品的單價之和正好等于C商品的單價,小明前兩次購買商品的數(shù)量和總費用如下表:

商品A的數(shù)量

商品B的數(shù)量

商品C的數(shù)量

總費用(元)

第一次

2

3

2

230

第二次

1

4

3

290

1)求A、B、C三種商品的單價;

2)若小明第三次需要購置A、BC三種商品共m個,其中C商品的數(shù)量是A商品的數(shù)量的2倍,恰好花了480元錢.

①求m的最大值;

②若小明在第三次購買A,BC三種商品時正好遇上買一送一活動,即購買一個C商品即可贈送一個A商品或一個B商品(優(yōu)先贈送A商品),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2﹣2x+c的頂點A在直線l:y=x﹣5上.

(1)求拋物線頂點A的坐標;
(2)設拋物線與y軸交于點B,與x軸交于點C、D(C點在D點的左側(cè)),試判斷△ABD的形狀;
(3)在直線l上是否存在一點P,使以點P、A、B、D為頂點的四邊形是平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D.下列四個命題:①當x>0時,y>0; ②若a=﹣1,則b=3;③拋物線上有兩點P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,則y1>y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點G,F(xiàn)分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為6 .其中正確的命題有( )個.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生志愿服務小組在學雷鋒活動中購買了一批牛奶到江陰兒童福利院看望孤兒.如果分給每位兒童5盒牛奶,那么剩下18盒牛奶;如果分給每位兒童6盒牛奶,那么最后一位兒童分不到6盒,但至少能有3盒.則這個兒童福利院的兒童最少有________個,最多有________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點.點1次向上跳動1個單位至點,緊接著第2次向左跳動2個單位至點,第3次向上跳動1個單位至點,第4次向右跳動3個單位至點,第5次又向上跳動1個單位至點,第6次向左跳動4個單位至點,……,照此規(guī)律,點2020次跳動至點的坐標是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若兩個二次函數(shù)圖象的頂點相同,開口大小相同,但開口方向相反,則稱這兩個二次函數(shù)為“對稱二次函數(shù)”.
(1)請寫出二次函數(shù)y=2(x﹣2)2+1的“對稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2與y1互為“對稱二次函數(shù)”,求函數(shù)y2的表達式,并求出當﹣3≤x≤3時,y2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6cm的正方形ABCD中,點E、F、G、H分別從點A、B、C、D同時出發(fā),均以1cm/s的速度向點B、C、D、A勻速運動,當點E到達點B時,四個點同時停止運動,在運動過程中,當運動時間為s時,四邊形EFGH的面積最小,其最小值是cm2

查看答案和解析>>

同步練習冊答案