【題目】二次函數(shù)的圖象如圖所示,根據(jù)圖象回答:

當(dāng)時(shí),寫出自變量的值.

當(dāng)時(shí),寫出自變量的取值范圍.

寫出的增大而減小的自變量的取值范圍.

若方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍(用含、、的代數(shù)式表示).

【答案】(1)(2) 當(dāng)時(shí),;(3) 當(dāng)時(shí),的增大而減小;(4)

【解析】

(1)當(dāng)y=0時(shí),x的值即為函數(shù)與x軸的兩個(gè)交點(diǎn);

(2)通過圖像即可讀;

(3)在對稱軸右側(cè)的函數(shù)即為的增大而減小的情況

(4)可將問題轉(zhuǎn)化為與直線有兩個(gè)交點(diǎn)進(jìn)行求解.

當(dāng)時(shí),

當(dāng)時(shí),;

拋物線的開口向下,對稱軸為

當(dāng)時(shí),的增大而減小

方程變形為,所以方程有兩個(gè)不相等的實(shí)數(shù)根可看作二次函數(shù)與直線有兩個(gè)交點(diǎn),拋物線開口向下,則只要在其頂點(diǎn)以下即可,根據(jù)頂點(diǎn)公式即可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,邊AB的垂直平分線DEACD,若CD=10cm,則AD=____________ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的例題

解方程

解:(1)當(dāng)x≥0時(shí),

原方程化為x2 – x –2=0

解得:x1=2,x2= - 1(不合題意,舍去)

2)當(dāng)x0時(shí),

原方程化為x2 + x –2=0

解得:x1=1,(不合題意,舍去)x2= -2

∴原方程的根是x1=2, x2= - 2

3)請參照例題解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖可以自由轉(zhuǎn)動的轉(zhuǎn)盤被等分,指針落在每個(gè)扇形內(nèi)的機(jī)會均等.

現(xiàn)隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向數(shù)字的概率為________;

小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOP為等邊三角形,A(0,2),點(diǎn)By軸上一動點(diǎn),以BP為邊作等邊PBC,延長CAx軸于點(diǎn)E.

(1)求證:OBAC;

(2)CAP的度數(shù)是;

(3)當(dāng)B點(diǎn)運(yùn)動時(shí),猜想AE的長度是否發(fā)生變化?并說明理由;

(4)(3)的條件下,在y軸上存在點(diǎn)Q,使得AEQ為等腰三角形,請寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)點(diǎn)先繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,再作出它關(guān)于原點(diǎn)的對稱點(diǎn)稱為一次變換,已知點(diǎn)A的坐標(biāo)為(﹣2,0),把點(diǎn)A經(jīng)過連續(xù)2014次這樣的變換得到的點(diǎn)A2014的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC AB=AC, AB 為直徑的 O BC 相交于點(diǎn) D, CA 的延長線相交于點(diǎn) E,過點(diǎn) D DFAC F.

(1)求證DF O 的切線;

(2) AC=3AE,的值

查看答案和解析>>

同步練習(xí)冊答案