解不等式組:
x+1
3
>0
2(x+5)≥6(x-1)
考點:解一元一次不等式組
專題:計算題
分析:先求出兩個不等式的解集,再求其公共解.
解答:解:
x+1
3
>0①
2(x+5)≥6(x-1)②

解不等式①得,x>-1,
解不等式②得,x≤4,
所以,不等式組的解集為:-1<x≤4.
點評:本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在⊙O中,直徑AB⊥CD于點E,點P在BA的延長線上,且滿足∠PDA=∠ADC.

(1)判斷直線PD與⊙O的位置關(guān)系,并說明理由;
(2)延長DO交⊙O于M(如圖2),當(dāng)M恰為
BC
的中點時,試求
DE
BE
的值;
(3)若PA=2,tan∠PDA=
1
2
,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組
3x+1<2(x+2)
-
1
3
x≤
5
3
x+2
,并在所給的數(shù)軸上表示出其解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值
x2-2x+1
x-2
÷(x+2+
3
x-2
),其中x=
2
-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,后求值:5(m+n)(m-n)-2(m+n)2-3(m-n)2,其中m=-2,n=
1
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某水果生產(chǎn)基地組織15輛汽車裝運(yùn)完A、B、C三種水果共80噸到外地銷售.按計劃,15輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種水果,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:
水 果  品  種ABC
每輛汽車運(yùn)載量(噸)654
每噸水果獲利(千元)11.62
(1)設(shè)裝運(yùn)A種水果的車輛數(shù)為x,裝運(yùn)B種水果的車輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式;
(2)如果裝運(yùn)每種水果的車輛數(shù)都不少于2輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)在(2)的條件下,若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:x2-2x=2x-1; 
(2)解不等式組:
-3x<6
x
2
x
3
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知滿足不等式
x+1
2
≤a+1的正整數(shù)解只有3個,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案