【題目】1)若4a+3b3,求92a27b

2)已知3×9m×27m321,求m的值

【答案】127;(24

【解析】

1)根據(jù)冪的乘方以及同底數(shù)冪的乘法法則解答即可;

2)根據(jù)冪的乘方以及同底數(shù)冪的乘法法則解答即可.

解:(1)∵4a+3b3

92a27b34a33b3327;

2)∵3×9m×27m3×32m×33m31+2m+3m321,

1+2m+3m21

解得m4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近 ;(精確到0.1)

(2)試估算口袋中白種顏色的球有多少只?

(3)請畫樹狀圖或列表計算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, , 的平分線的外角平分線交于點,過點,交于點,交于點

)圖中除之外,還有幾個等腰三角形,請分別寫出來;

)若 ,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面4個說法中,正確的個數(shù)為( )

(1)“從袋中取出一只紅球的概率是99%”,這句話的意思是肯定會取出一只紅球,因為概率已經(jīng)很大

(2)袋中有紅、黃、白三種顏色的小球,這些小球除顏色外沒有其他差別,因為小張對取出一只紅球沒有把握,所以小張說:“從袋中取出一只紅球的概率是50

(3)小李說,這次考試我得90分以上的概率是200

(4)“從盒中取出一只紅球的概率是0”,這句話是說取出一只紅球的可能性很小

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P射線AC上任意一點 (不與A、DC三點重合),過點PPQAB,垂足為Q,交線段BDE

(1)如圖①,當(dāng)點P在線段AC上時,說明∠PDE=∠PED

(2)畫出∠CPQ的角平分線交線段AB于點F,則PFBD有怎樣的位置關(guān)系?畫出圖形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠ABC=∠ACB.

(1)尺規(guī)作圖:過頂點A,作ABC的角平分線AD;(不寫作法,保留作圖痕跡)

(2)在AD上任取一點E,連接BE、CE.求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,矩形紙片ABCD的邊AD=3,CD=2,點P是邊CD上的一個動點(不與點C重合,把這張矩形紙片折疊,使點B落在點P的位置上,折痕交邊AD與點M折痕交邊BC于點N .

1)寫出圖中的全等三角形. 設(shè)CP= ,AM= ,寫出的函數(shù)關(guān)系式;

2)試判斷∠BMP是否可能等于90°. 如果可能,請求出此時CP的長;如果不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案