【題目】如圖,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,則下列結(jié)論:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BDF;④∠ABF=∠BCD,其中正確的有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
【答案】C
【解析】
根據(jù)平行線(xiàn)的性質(zhì)求出∠ACB=∠E,根據(jù)角平分線(xiàn)定義和平行線(xiàn)的性質(zhì)求出∠ABF=∠CBF=∠ADC=∠EDC,推出BF∥DC,再根據(jù)平行線(xiàn)的性質(zhì)判斷即可.
∵BC∥DE,
∴∠ACB=∠E,∴①正確;
∵BC∥DE,
∴∠ABC=∠ADE,
∵BF平分∠ABC,DC平分∠ADE,
∴∠ABF=∠CBF=∠ABC,∠ADC=∠EDC=∠ADE,
∴∠ABF=∠CBF=∠ADC=∠EDC,
∴BF∥DC,
∴∠BFD=∠FDC,
∴根據(jù)已知不能推出∠ADF=∠CDF,∴②錯(cuò)誤;③錯(cuò)誤;
∵∠ABF=∠ADC,∠ADC=∠EDC,
∴∠ABF=∠EDC,
∵DE∥BC,
∴∠BCD=∠EDC,
∴∠ABF=∠BCD,∴④正確;
即正確的有2個(gè),
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明過(guò)程:
如圖所示,直線(xiàn)AD與AB,CD分別相交于點(diǎn)A,D,與EC,BF分別相交于點(diǎn)H,G,已知∠1=∠2,∠B=∠C.
求證:∠A=∠D.
證明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,回答問(wèn)題:
若整數(shù)能被4整除,則稱(chēng)整數(shù)為“完美數(shù)”.例如:8能被4整除,所以8是“完美數(shù)”;一4是4的倍數(shù),所以一4也是“完美數(shù)”。
(1)10到15之間的“完美數(shù)”是_______;
若,是整數(shù),則 ________ “完美數(shù)”(填:“是”或“不是”);
(2)若任意四個(gè)連續(xù)的“完美數(shù)”中最小數(shù)的是4(是整數(shù)),則它與四個(gè)數(shù)中最大數(shù)的積是32的倍數(shù)嗎?請(qǐng)說(shuō)明理由;
(3)當(dāng)是正整數(shù)時(shí),試說(shuō)明:一定是“完美數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店計(jì)劃購(gòu)進(jìn)一批新的花束以滿(mǎn)足市場(chǎng)需求,三款不同品種的花束,進(jìn)價(jià)分別是A款180元/束,B款60元/束,C款120元/束。店鋪在經(jīng)銷(xiāo)中,A款花束可賺20元/束,B款花束可賺10元/束,C款花束可賺12元/束。
(1)若商場(chǎng)用6000元同時(shí)購(gòu)進(jìn)兩種不同款式的花束共40部,并恰好將錢(qián)用完,請(qǐng)你通過(guò)計(jì)算分析進(jìn)貨方案;
(2)在(1)的條件下,求盈利最多的進(jìn)貨方案;
(3)若該店鋪同時(shí)購(gòu)進(jìn)三款花束共20束,共用去1800元,問(wèn)這次店鋪共有幾種可能的方案?利潤(rùn)最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)的圖象與軸、軸分別交于點(diǎn),與函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)為2.在軸上有一點(diǎn)(其中),過(guò)點(diǎn)作軸的垂線(xiàn),分別交函數(shù)和的圖象于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若四邊形是平行四邊形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾龋诤拥哪习哆咟c(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2.
(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com