【題目】點(diǎn)P是正方形ABCDAB上一點(diǎn)(不與A、B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于(

A. 75°B. 60°C. 30°D. 45°

【答案】D

【解析】

EAB的延長(zhǎng)線AF的垂線,垂足為F,可得出∠F為直角,又四邊形ABCD為正方形,可得出∠A為直角,進(jìn)而得到一對(duì)角相等,由旋轉(zhuǎn)可得∠DPE為直角,根據(jù)平角的定義得到一對(duì)角互余,在直角三角形ADP中,根據(jù)兩銳角互余得到一對(duì)角互余,根據(jù)等角的余角相等可得出一對(duì)角相等,再由PD=PE,利用AAS可得出三角形ADP與三角形PEF全等,根據(jù)確定三角形的對(duì)應(yīng)邊相等可得出AD=PF,AP=EF,再由正方形的邊長(zhǎng)相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代換可得出EF=BF,即三角形BEF為等腰直角三角形,可得出∠EBF45°,再由∠CBF為直角,即可求出∠CBE的度數(shù).

過點(diǎn)EEFAF,交AB的延長(zhǎng)線于點(diǎn)F,則∠F=90°,

∵四邊形ABCD為正方形,

AD=AB,∠A=ABC=90°,

∴∠ADP+APD=90°,

由旋轉(zhuǎn)可得:PD=PE,∠DPE=90°

∴∠APD+EPF=90°

∴∠ADP=EPF,

APDFEP中,

,

∴△APD≌△FEPAAS),

AP=EF,AD=PF,

又∵AD=AB

PF=AB,即AP+PB=PB+BF

AP=BF,

BF=EF,又∠F=90°,

∴△BEF為等腰直角三角形,

∴∠EBF=45°,又∠CBF=90°,

則∠CBE=45°

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將ABC平移,使得點(diǎn)A移至圖中的點(diǎn)A'的位置.

1)平移后所得ABC的頂點(diǎn)B的坐標(biāo)為 ,C的坐標(biāo)為 ;

2)平移過程中ABC掃過的面積為 ;

3)將直線AB以每秒1個(gè)單位長(zhǎng)度的速度向右平移,則平移 秒時(shí)該直線恰好經(jīng)過點(diǎn)C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖1,AC和BD相交于點(diǎn)O,OA=OC,OB=OD,求證:DC∥AB.

(2)如圖2,在⊙O中,直徑AB=6,AB與弦CD相交于點(diǎn)E,連接AC、BD,若AC=2,求cosD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1、P2(P2在P1的右側(cè))是y= (k>0)在第一象限上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(2,0).

(1)填空:當(dāng)點(diǎn)P1的橫坐標(biāo)逐漸增大時(shí),△P1OA1的面積將(減小、不變、增大)
(2)若△P1OA1與△P2A1A2均為等邊三角形,
①求反比例函數(shù)的解析式;
②求出點(diǎn)P2的坐標(biāo),并根據(jù)圖象直接寫在第一象限內(nèi),當(dāng)x滿足什么條件時(shí),經(jīng)過點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)拼一拼,畫一畫:請(qǐng)你用4個(gè)長(zhǎng)為a,寬為b的矩形拼成一個(gè)大正方形,并且正中間留下一個(gè)洞,這個(gè)洞恰好是一個(gè)小正方形。

2)用不同方法計(jì)算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?

3)當(dāng)拼成的這個(gè)大正方形邊長(zhǎng)比中間小正方形邊長(zhǎng)多3cm時(shí),它的面積就多24cm2,求中間小正方形的邊長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)A(4,0),點(diǎn)B(m, m),點(diǎn)C為線段OA上一點(diǎn)(點(diǎn)O為原點(diǎn)),則AB+BC的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAB的中點(diǎn),的延長(zhǎng)線于點(diǎn)E,連接AE,過點(diǎn)ADP于點(diǎn)F,連接BF、下列結(jié)論中:;是等邊三角形;;其中正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比學(xué)習(xí):

一動(dòng)點(diǎn)沿著數(shù)軸向右平移個(gè)單位,再向左平移個(gè)單位,相當(dāng)于向右平移個(gè)單位.用有理數(shù)加法表示為.若坐標(biāo)平面上的點(diǎn)做如下平移:沿軸方向平移的數(shù)量為(向右為正,向左為負(fù),平移個(gè)單位),沿軸方向平移的數(shù)量為(向上為正,向下為負(fù),平移個(gè)單位),則把有序數(shù)對(duì)叫做這一平移的“平移量”;“平移量”與“平移量”的加法運(yùn)算法則為

解決問題:

1)計(jì)算:;

2)動(dòng)點(diǎn)從坐標(biāo)原點(diǎn)出發(fā),先按照“平移量”平移到,再按照“平移量”平移到:若先把動(dòng)點(diǎn)按照.“平移量”平移到,再按照“平移量”平移,最后的位置還是嗎?在圖1中畫出四邊形

3)如圖2,一艘船從碼頭出發(fā),先航行到湖心島碼頭,再從碼頭航行到碼頭,最后回到出發(fā)點(diǎn).請(qǐng)用“平移量”加法算式表示它的航行過程.

解:(1______;

2)答:______;

3)加法算式:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)ODE∥AC,AE∥BD

(1)、求證:四邊形AODE是矩形;(2)、若AB6,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案