【題目】如圖是根據(jù)對某區(qū)初中三個年級學生課外閱讀的漫畫叢書”、“科普常識”、“名人傳記”、“其它中,最喜歡閱讀的一種讀物進行隨機抽樣調查,并繪制了下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:

(1)求該區(qū)抽樣調查人數(shù);

(2)補全條形統(tǒng)計圖,并求出最喜歡其它讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角度數(shù);

(3)若該區(qū)有初中生14400人,估計該區(qū)有初中生最喜歡讀名人傳記的學生是多少人?

【答案】(1)該區(qū)抽樣調查的人數(shù)是2400人;(2)見解析,最喜歡其它讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)估計最喜歡讀名人傳記的學生是4896

【解析】

(1)由科普知識人數(shù)及其百分比可得總人數(shù);

(2)總人數(shù)乘以漫畫叢書的人數(shù)求得其人數(shù)即可補全圖形,用360°乘以其他人數(shù)所占比例可得;

(3)總人數(shù)乘以名人傳記的百分比可得.

(1)840÷35%=2400(人),

∴該區(qū)抽樣調查的人數(shù)是2400人;

(2)2400×25%=600(人),

∴該區(qū)抽樣調查最喜歡漫畫叢書的人數(shù)是600人,

補全圖形如下:

×360°=21.6°,

∴最喜歡其它讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;

(3)從樣本估計總體:14400×34%=4896(人),

答:估計最喜歡讀名人傳記的學生是4896人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在 Rt△ABC 中,∠A=90°,AB=AC,點 D、E 分別在邊 AB、AC 上,AD=AE,連接DC,點 M、P、N 分別為 DE、DC、BC 的中點,

(1)觀察猜想:如圖 1 中,△PMN 三角形;

(2)探究證明:把△ADE 繞點 A 逆時針方向旋轉到圖 2 的位置,連接 MN,BD, CE.判斷△PMN 的形狀,并說明理由;

(3)拓展延伸:將△ADE 繞點 A 在平面內自由旋轉,若 AD=4,AB=10,請求△PMN 面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結論:①9a﹣3b+c=0;4a﹣2b+c>0;③方程ax2+bx+c4=0有兩個相等的實數(shù)根;④方程ax﹣1)2+bx﹣1)+c=0的兩根是x1=﹣2,x2=2.其中正確結論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,幸福小區(qū)C位于快遞站點B的北偏東35°方向,沁苑小區(qū)D位于B的南偏東55°方向,無人機以1千米/分鐘的速度配送快遞時,從BC需飛行8分鐘,從BD需飛行15分鐘.若無人機的配送路線是B→C→D→B請求出配送途中飛行所需時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x+4分別與x軸,y軸交于B,A兩點

1)求ABO的面積;

2)如果在第三象限內有一點P(1m),請用含m的式子表示四邊形AOPB的面積;

3)在(2)的條件下,是否存在點P,使四邊形AOPB的面積是ABO面積的2倍?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的有________

AD的平分線;②;③點DAB的中垂線上;④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A﹣10)和B3,0)兩點,交y軸于點E

1)求此拋物線的解析式.

2)若直線y=x+1與拋物線交于AD兩點,與y軸交于點F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸的一個交點

(1)試分別求出這條拋物線與軸的另一個交點及與軸的交點的坐標.

(2)設拋物線的頂點為,請在圖中畫出拋物線的草圖,若點在直線上,試判斷點是否在經(jīng)過點的反比例函數(shù)的圖象上,并說明理由;

(3)試求的值.

查看答案和解析>>

同步練習冊答案