【題目】如圖,B、E是以AD為直接的半圓O的三等分點(diǎn),弧BE的長(zhǎng)為,作BC⊥AE,交AE的延長(zhǎng)線于點(diǎn)C,則圖中陰影部分的面積為______.
【答案】.
【解析】
首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出BC,AC的長(zhǎng),利用S△ABC-S扇形BOE=圖中陰影部分的面積求出即可.
解:連接BD,BE,BO,EO,
∵B,E是半圓弧的三等分點(diǎn),
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=∠EBA=30°,
∴BE∥AD,
∵弧BE的長(zhǎng)為,
,
解得:R=2,
∴AB=ADcos30°=2,
,
,
,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面積相等,
∴圖中陰影部分的面積為:S△ABC-S扇形BOE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)y2=(m為常數(shù),m≠0)的圖象相交于點(diǎn)M(1,4)和點(diǎn)N(4,n).
(1)反比例函數(shù)與一次函數(shù)的解析式.
(2)函數(shù)y2=的圖象(x>0)上有一個(gè)動(dòng)點(diǎn)C,若先將直線MN平移使它過(guò)點(diǎn)C,再繞點(diǎn)C旋轉(zhuǎn)得到直線PQ,PQ交x軸于點(diǎn)A,交y軸點(diǎn)B,若BC=2CA,求OAOB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:
①4a+2b<0;
②﹣1≤a≤;
③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;
④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中結(jié)論正確的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社推出一條成本價(jià)為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報(bào)價(jià)(元/人)之間的關(guān)系為,已知:旅游主管部門(mén)規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價(jià)的取值范圍;
(2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;
(3)當(dāng)這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門(mén)衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長(zhǎng)為1.2米(燈罩長(zhǎng)度忽略不計(jì)),∠AOM=60°.
(1)求點(diǎn)M到地面的距離;
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過(guò)?若能,請(qǐng)通過(guò)計(jì)算說(shuō)明;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市某特產(chǎn)專賣店銷售一種蜜棗,每千克的進(jìn)價(jià)為10元,銷售過(guò)程中發(fā)現(xiàn),每天銷量與銷售單價(jià)x(元)之間關(guān)系可以近似地看作一次函數(shù).(利潤(rùn)=售價(jià)-進(jìn)價(jià))
(1)寫(xiě)出每天的利潤(rùn)w(元)與銷售單價(jià)x(元)之間函數(shù)解析式;
(2)當(dāng)銷售單價(jià)定為多少元時(shí),這種蜜棗每天能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
(3)物價(jià)部門(mén)規(guī)定,這種蜜棗的銷售單價(jià)不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤(rùn),則銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨17噸.
(1)請(qǐng)問(wèn)1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸?
(2)目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共計(jì)10輛,全部貨物一次運(yùn)完,其中每輛大貨車一次運(yùn)費(fèi)花費(fèi)130元,每輛小貨車一次運(yùn)貨花費(fèi)100元,請(qǐng)問(wèn)貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費(fèi)用?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com