【題目】某市某特產(chǎn)專賣店銷售一種蜜棗,每千克的進(jìn)價為10元,銷售過程中發(fā)現(xiàn),每天銷量與銷售單價x(元)之間關(guān)系可以近似地看作一次函數(shù).(利潤=售價-進(jìn)價)
(1)寫出每天的利潤w(元)與銷售單價x(元)之間函數(shù)解析式;
(2)當(dāng)銷售單價定為多少元時,這種蜜棗每天能夠獲得最大利潤?最大利潤是多少元?
(3)物價部門規(guī)定,這種蜜棗的銷售單價不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤,則銷售單價應(yīng)定為多少元?
【答案】(1);(2)當(dāng)銷售單價定為30元時,每天所獲利潤最大,為400元;(3)要想每天獲利300元,銷售單價應(yīng)定為20元.
【解析】
(1)根據(jù)每軸的利潤w=(x-10)y,再把y=-x+50代入即可求出w與x之間的函數(shù)解析式;
(2)根據(jù)利潤的表達(dá)式,利用配方法可得出利潤的最大值;
(3)先得出銷售利潤的表達(dá)式,然后建立方程,解出即可得出銷售單價.
解:(1)
(2)
所以,當(dāng)銷售單價定為30元時,每天所獲利潤最大,為400元.
(3)由題意可得:
解得:
所以,要想每天獲利300元,銷售單價應(yīng)定為20元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達(dá)點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、E是以AD為直接的半圓O的三等分點,弧BE的長為,作BC⊥AE,交AE的延長線于點C,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,點P是線段AB的中點,且AB=12,現(xiàn)分別以AP,BP為邊,在AB的同側(cè)作等邊△MAP和△NBP,連結(jié)MN。
(1)請只用不含刻度的直尺在圖1中找到△MNP外接圓的圓心O,并保留作圖痕跡;
(2)若將“點P是線段AB的中點”改成“點P是線段AB上異于端點的任意一點”,其余條件不變(如圖2),請用文字寫出△MNP外接圓圓心O的位置,并求出該圓半徑的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;
(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:購買原價超過500元的商品,超過500元的部分可以享受打折優(yōu)惠.若購買商品的實際付款金額y(單位:元)與商品原價x(單位:元)的函數(shù)關(guān)系的圖像如圖所示,則超過500元的部分可以享受的優(yōu)惠是( )
A. 打六折B. 打七折C. 打八折D. 打九折
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量建筑物AD的高度,小亮從建筑物正前方10米處的點B出發(fā),沿坡度i=1:的斜坡BC前進(jìn)6米到達(dá)點C,在點C處放置測角儀,測得建筑物頂部D的仰角為40°,測角儀CE的高為1.3米,A、B、C、D、E在同一平面內(nèi),且建筑物和測角儀都與地面垂直求建筑物AD的高度.(結(jié)果精確到0.1米參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南潯區(qū)某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為1200元,銷售單價定為1700元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按1700元銷售;若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低10元,但銷售單價均不低于1400元.
(1)若顧客一次購買這種產(chǎn)品6件時,則公司所獲得的利潤為 元?
(2)顧客一次性購買該產(chǎn)品至少多少件時,其銷售單價為1400元;
(3)經(jīng)過市場調(diào)查,該公司的銷售人員發(fā)現(xiàn):當(dāng)一次性購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.設(shè)一次性購買該產(chǎn)品x件,公司所獲得的利潤為y元
①請你通過分析求出此時y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②為使顧客一次性購買的數(shù)量越多,公司所獲得的利潤越大,公司應(yīng)將最低銷售單價調(diào)整為 元?(其它銷售條件不變)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com