【題目】有七張正面分別標(biāo)有數(shù)字:﹣3,﹣2,﹣1,01,23的卡片,除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程x22m1x+m23m0有實數(shù)根,且不等式組無解的概率是_____

【答案】

【解析】

根據(jù)判別式的意義得到∴△=4m-12-4m2-3m≥0,解得m≥-1;解不等式組得到-1≤m≤2,滿足條件的a的值為-1,0,12,然后根據(jù)概率公式求解.

解:∵一元二次方程x22m1x+m23m0有實數(shù)根,

∴△=4m124m23m)≥0,

解得m≥﹣1,

無解,

m2,

∴﹣1m2,

∴滿足條件的a的值為﹣1,0,12,

∴使關(guān)于x的一元二次方程x22m1x+m23m0有實數(shù)根,且不等式組無解的概率為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正確結(jié)論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一張長方形紙片,ABCDa,ADBCbab2a).

將這張紙片沿著過點A的折痕翻折,使點B落在AD邊上的點F,折痕交BC于點E,將折疊后的紙片再次沿著另一條過點A的折痕翻折,點E恰好與點D重合,此時折痕交DC于點G

1)在圖中確定點F、點E和點G的位置;

2)連接AE,則∠EAB   °;

3)用含有ab的代數(shù)式表示線段DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、Ex軸上,CFy軸于點B(0,2),且矩形其面積為8,此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長是多少米?

3 當(dāng) AB 的長是多少米時,圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線l與坐標(biāo)軸相交于A2,0),B0,)兩點,將RtAOB繞原點O逆時針旋轉(zhuǎn)到RtAOB′.

1)求直線l的解析式;

2)若OA′⊥AB,垂足為D,求點D的坐標(biāo);

3)如圖2,若將RtAOB繞原點O逆時針旋轉(zhuǎn)90°,AB′與直線l相交于點F,點Ex軸上一動點,試探究:是否存在點E,使得以點A,E,F為頂點的三角形和△ABB′相似,若存在,請求出點E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,連接AE.

求證:(1)BF=DF;

(2)AE∥BD;

(3)若AB=6,AD=8,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACBC,AB10,以AB為斜邊向上作RtABD,使∠ADB90°.連接CD,若CD7,則AD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線ly=﹣x1,雙曲線y,在l上取一點A1,過A1x軸的垂線交雙曲線于點B1,過B1y軸的垂線交l于點A2,請繼續(xù)操作并探究:過A2x軸的垂線交雙曲線于點B2,過B2y軸的垂線交l于點A3,…,這樣依次得到l上的點A1A2,A3,…,An,…記點An的橫坐標(biāo)為an,若a12,則a2018_____;若要將上述操作無限次地進(jìn)行下去,則a1不可能取的值是_____

查看答案和解析>>

同步練習(xí)冊答案