【題目】為落實(shí)疫情期間的垃圾分類,樹(shù)立全面環(huán)保意識(shí),某校舉行了“垃圾分類,綠色環(huán)!敝R(shí)競(jìng)賽活動(dòng),根據(jù)學(xué)生的成績(jī)劃分為,,四個(gè)等級(jí),并繪制了不完整的兩種統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,回答下列問(wèn)題:

1)參加知識(shí)競(jìng)賽的學(xué)生共有______人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中,______,______,等級(jí)對(duì)應(yīng)的圓心角為______度;

3)小明是四名獲等級(jí)的學(xué)生中的一位,學(xué)校將從獲等級(jí)的學(xué)生中任選取2人,參加市舉辦的知識(shí)競(jìng)賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖,求小明被選中參加區(qū)知識(shí)競(jìng)賽的概率.

【答案】140,條形統(tǒng)計(jì)圖見(jiàn)解析;(210,40,144;(3

【解析】

1)從兩個(gè)統(tǒng)計(jì)圖可得,“D級(jí)的有12人,占調(diào)查人數(shù)的30%,可求出調(diào)查人數(shù);進(jìn)而求出“B級(jí)的人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;
2)計(jì)算出“A級(jí)所占的百分比,“C級(jí)所占的百分比,進(jìn)而求出“C級(jí)所對(duì)應(yīng)的圓心角的度數(shù);
3)用列表法列舉出所有等可能出現(xiàn)的情況,從中找出符合條件的情況數(shù),進(jìn)而求出概率.

解:(112÷30%=40人,40×20%=8人,
故答案為:40,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:


24÷40=10%,16÷40=40%,
360°×40%=144°
故答案為:10,40144;
3)設(shè)除小明以外的三個(gè)人記作A、B、C,從中任意選取2人,所有可能出現(xiàn)的情況如下:

共有12中可能出現(xiàn)的情況,其中小明被選中的有6種,
所以小明被選中參加區(qū)知識(shí)競(jìng)賽的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)設(shè)了“3D”打印、數(shù)學(xué)史、詩(shī)歌欣賞、陶藝制作四門(mén)校本課程,為了解學(xué)生對(duì)這四門(mén)校本課程的喜愛(ài)情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查(問(wèn)卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計(jì)圖.

請(qǐng)您根據(jù)圖中提供的信息回答下列問(wèn)題:

1)統(tǒng)計(jì)圖中的a= ,b= ;

2)“D”對(duì)應(yīng)扇形的圓心角為 度;

3)根據(jù)調(diào)查結(jié)果,請(qǐng)您估計(jì)該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);

4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門(mén)校本課程中隨機(jī)選取一門(mén),請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求兩人恰好選中同一門(mén)校本課程的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過(guò)兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,點(diǎn)軸上,且

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)的橫坐標(biāo)為

①當(dāng)時(shí),求四邊形的面積的函數(shù)關(guān)系式,并求出的最大值;

②點(diǎn)在直線上,若以為邊,點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸交于A(﹣3,0),Bl0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)P是拋物線上的動(dòng)點(diǎn),且滿足SPAO2SPCO,求出P點(diǎn)的坐標(biāo);

3)連接BC,點(diǎn)Ex軸一動(dòng)點(diǎn),點(diǎn)F是拋物線上一動(dòng)點(diǎn),若以B、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左),與軸交于點(diǎn),連接,點(diǎn)為二次函數(shù)圖象上的動(dòng)點(diǎn).

1)若的面積為3,求拋物線的解析式;

2)在(1)的條件下,若在軸上存在點(diǎn),使得,求點(diǎn)的坐標(biāo);

3)若為對(duì)稱軸右側(cè)拋物線上的動(dòng)點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn),判斷的值是否為定值,若是,求出定值,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1 中,已知BC=4,NBC上一點(diǎn)且,試說(shuō)明:

2)問(wèn)題提出:

如圖2,已知正方形ABCD的邊長(zhǎng)為4,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),求的最小值.

3)推廣運(yùn)用:

如圖3,已知菱形ABCD的邊長(zhǎng)為4,∠B60°,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)DEG上運(yùn)動(dòng),則△CDF周長(zhǎng)的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Ax1,y1)、Bx2,y2)在二次函數(shù)yx2mxn的圖像上,當(dāng)x11、x23時(shí),y1y2

1)若Pab1),Q3,b2)是函數(shù)圖象上的兩點(diǎn),b1b2,則實(shí)數(shù)a的取值范圍是(

Aa1 Ba3 Ca1a3 D1a3

2)若拋物線與x軸只有一個(gè)公共點(diǎn),求二次函數(shù)的表達(dá)式.

3)若對(duì)于任意實(shí)數(shù)x1、x2都有y1y2≥2,則n的范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案