【題目】(1)如圖(1),將兩塊直角三角尺疊放在一起,并且它們的直角頂點C重合,請比較∠ACE和∠DCB的大小,并說明理由;
(2)如圖(2),若是將等腰直角三角尺的直角頂點和另一把直角三角尺的60°角的頂點A重合,將三角板ADE繞點A旋轉(zhuǎn),旋轉(zhuǎn)過程中三角板ADE的邊AD始終在∠BAC的內(nèi)部,試探索:在旋轉(zhuǎn)過程中,∠CAE與∠BAD的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請求出差的變化范圍.
科目:初中數(shù)學 來源: 題型:
【題目】“十九大”之后,某種子站讓利給農(nóng)民,對價格為a元/千克的種子,如果一次購買2千克以上的,超過2千克部分的種子價格打8折.某科技人員對付款金額和購買量這兩個變量的對應關(guān)系用列表法做了分析,并繪制出了函數(shù)圖象.以下是該科技人員繪制的圖象和表格的不完整資料,已知點A的坐標為(2,10).請你結(jié)合表格和圖象:
付款金額(元) | a | 7.5 | 10 | 12 | b |
購買量(千克) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)、指出付款金額和購買量哪個變量是函數(shù)的自變量x,并寫出表中a、b的值;
(2)、求出當x>2時,y關(guān)于x的函數(shù)解析式;
(3)、甲農(nóng)戶將8.8元錢全部用于購買該玉米種子,乙農(nóng)戶購買了4165克該玉米種子,分別計算他們的購買量和付款金額.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一平面內(nèi)四個點A,B,C,D.
(1)利用尺規(guī),按下面的要求作圖.要求:不寫畫法,保留作圖痕跡,不必寫結(jié)論.
①作射線AC;
②連接AB,BC,BD,線段BD與射線AC相交于點O;
③在線段AC上作一條線段CF,使CF=AC﹣BD.
(2)觀察(1)題得到的圖形,我們發(fā)現(xiàn)線段AB+BC>AC,得出這個結(jié)論的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩座城市的中心火車站A,B兩站相距360 km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54 km/h,當動車到達B站時,特快列車恰好到達距離A站135 km處的C站.求動車和特快列車的平均速度各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分)的關(guān)系如圖所示,請結(jié)合圖像,解答下列問題:
(1)a= b= ,m=
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點為B.AC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:(、是正整數(shù),且).在n的所有這種分解中,如果、兩因數(shù)之差的絕對值最小,我們就稱是n的最佳分解,并規(guī)定:.例如12可以分解成,或,因為,所以是12的最佳分解,所以.如果一個兩位正整數(shù),(,、為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)為“吉祥數(shù)”,則所有“吉祥數(shù)”中的最大值為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鐵路貨運調(diào)度站有A、B兩個信號燈,在燈這旁停靠著甲、乙、丙三列火車.它們中最長的車長與居中車長之差等于居中車長與最短車長之差,其中乙車的車長居中,最開始的時候,甲、丙兩車車尾對齊,且車尾正好位于A信號燈處,而車頭則沖著B信號燈的方向,乙車的車尾則位于B信號燈處,車頭則沖著A的方向,現(xiàn)在,三列火車同時出發(fā)向前行駛,3秒之后三列火車的車頭恰好相遇,再過9秒,甲車恰好超過丙車,而丙車也正好完全和乙車錯開,請問:甲乙兩車從車頭相遇直到完全錯開一共用了_____秒鐘.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com