【題目】如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A、B兩點,則tanOAB的值是( 。

A. B. C. 1 D.

【答案】A

【解析】

過點AACx軸于C,過點BBDx軸于D,根據(jù)已知條件易證△OBD∽△AOC,根據(jù)相似三角形的性質可得 ,又因點A在反比例函數(shù)y=的圖象上,點B在反比例函數(shù)y=﹣的圖象上,根據(jù)反比例函數(shù)k的幾何意義可得SOBD=,SAOC=2,所以,即可得tanOAB=

過點AACx軸于C,過點BBDx軸于D,

∴∠ACO=ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=AOC,

∴△OBD∽△AOC,

,

∵點A在反比例函數(shù)y=的圖象上,點B在反比例函數(shù)y=﹣的圖象上,

SOBD=,SAOC=2,

,

tanOAB=

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程=1的解為負數(shù),且關于x、y的二元一次方程組的解之和為正數(shù),則下列各數(shù)都滿足上述條件a的值的是( 。

A. ,2,5 B. 0,3,5 C. 3,4,5 D. 4,5,6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B是⊙O上兩點,若四邊形ACBO是菱形,⊙O的半徑為r,則點A與點B之間的距離為( )

A. r B. r C. r D. 2r

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CAB延長線上一點,CD⊙O相切于點E,AD⊥CD于點D

1)求證:AE平分∠DAC

2)若AB=4,∠ABE=60°

AD的長;

求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為R的圓內,ABCDEF是正六邊形,EFGH是正方形.

(1)求正六邊形與正方形的面積比;(2)連接OF,OG,求∠OGF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ABC=90°,AB=3,BC=4,過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,則這個等腰三角形的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形,邊上的一點,以為邊作等邊三角形,使點在直線的同側,連結.

(1)求證:.

(2)的延長線上,仍以為邊作等邊三角形,使得在直線的同側,那么還平行嗎?畫圖證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角ABC中,∠C=90°,DBC的中點,將ABC折疊,使點A與點D重合,EF為折痕,則sinBED的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2 m,圖中折線OABD、線段EF分別表示s1、s2t之間的函數(shù)關系的圖象。

1)求s2t之間的函數(shù)關系式;

2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠?

查看答案和解析>>

同步練習冊答案