【題目】車輛轉(zhuǎn)彎時(shí),能否順利通過直角彎道的標(biāo)準(zhǔn)是:車輛是否可以行使到和路的邊界夾角是45°的位置(如圖1中②的位置),例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時(shí),連接EF,交CD于點(diǎn)G,若GF的長度至少能達(dá)到車身寬度,則車輛就能通過.
(1)試說明長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎;
(2)為了能使長8m,寬3m的消防車通過該彎道,可以將轉(zhuǎn)彎處改為圓弧(分別是以O為圓心,以OM和ON為半徑的弧),具體方案如圖3,其中OM⊥OM′,請你求出ON的最小值.
【答案】(1)消防車不能通過該直角轉(zhuǎn)彎;(2)ON至少為4.5米.
【解析】
(1)過點(diǎn)F作FH⊥EC于點(diǎn)H,根據(jù)道路的寬度求出FH=EH=4m,然后根據(jù)等腰直角三角形的性質(zhì)求出EF、GE的長度,相減即可得到GF的長度,如果不小于車身寬度,則消防車能通過,否則,不能通過;
(2)假設(shè)車身C、D分別與點(diǎn)M′、M重合,根據(jù)等腰直角三角形的性質(zhì)求出OG=CD=4,OC=CG=4,然后求出OF的長度,從而求出可以通過的車寬FG的長度,如果不小于車寬,則消防車能夠通過,否則,不能通過;設(shè)ON=x,表示出OC=x+4,OG=x+3,又OG=CD=4,在Rt△OCG中,利用勾股定理列式進(jìn)行計(jì)算即可求出ON的最小值.
解:(1)消防車不能通過該直角轉(zhuǎn)彎.
理由如下:如圖,作FH⊥EC,垂足為H,
∵FH=EH=4,
∴EF=4,且∠GEC=45°,
∵GC=4,
∴GE=GC=4,
∴GF=4﹣4<3,
即GF的長度未達(dá)到車身寬度,
∴消防車不能通過該直角轉(zhuǎn)彎.
(2)若C、D分別與M′、M重合,則△OGM為等腰直角三角形,
∴OG=4,OM=4,
∴OF=ON=OM﹣MN=4﹣4,
∴FG=OG﹣OF=×8﹣(4﹣4)=8﹣4<3,
∴C、D在上,
設(shè)ON=x,連接OC,在Rt△OCG中,
OG=x+3,OC=x+4,CG=4,
由勾股定理得,OG2+CG2=OC2,
即(x+3)2+42=(x+4)2,
解得x=4.5.
答:ON至少為4.5米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形材料,高線AH長8cm,底邊BC長10cm,要把它加工成一個(gè)矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個(gè)頂點(diǎn)D、G分別在AB、AC上,AH交DG于M.
(1)求證:AMBC=AHDG;
(2)加工成的矩形零件DEFG的面積能否等于25cm2?若能,求出寬DE的長度;否則,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】LED燈具有環(huán)保節(jié)能、投射范圍大、無頻閃、使用壽命較長等特點(diǎn),在日常生活中,人們更傾向于LED燈的使用.某商場購進(jìn)了LED燈泡與普通白熾燈泡共300個(gè),LED燈泡為每個(gè)進(jìn)價(jià)45元,售價(jià)為每個(gè)60元,普通白熾燈泡進(jìn)價(jià)為每個(gè)25元,售價(jià)為每個(gè)30元.
(1)若LED燈泡按原售價(jià)進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可以獲利3200元.求該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個(gè)?
(2)該商場又購進(jìn)LED燈泡與普通白熾燈泡若干個(gè)并展開了降價(jià)促銷活動(dòng),在促銷期間,每個(gè)LED燈泡的利潤為進(jìn)價(jià)的(m+20)%,每個(gè)普通白熾燈泡按原售價(jià)降低m%銷售.結(jié)果在促銷活動(dòng)中LDE燈泡的銷售量比(1)中的銷售量降低了m%,普通白熾燈泡銷售量比(1)中銷售量上升了20%,活動(dòng)共獲利2400元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)y=ax2+bx+a-5(a、b為常數(shù),a≠0),且2a+b=3.
(1)若該二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,4),求該二次函數(shù)的解析式.
(2)無論a取何常數(shù),這個(gè)二次函數(shù)的圖象始終經(jīng)過一個(gè)定點(diǎn),求出這個(gè)定點(diǎn)坐標(biāo).
(3)已知點(diǎn)P(x0,m)和Q(1,n)都在二次函數(shù)的圖象上,若x0<1,且m>n,求x0的取值范圍(用含a的代數(shù)式表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,大圓O的半徑OC是小圓O1的直徑,且有OC垂直于圓O的直徑AB.圓O1的切線AD交OC的延長線于點(diǎn)E,切點(diǎn)為D.已知圓O1的半徑為r,則AO1=_____,DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠B=a,DE交AC于點(diǎn)E,下列結(jié)論:①AD2=AE.AB;②1.8≤AE<5;⑤當(dāng)AD=時(shí),△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿EF對折,點(diǎn)A1恰好落在CD邊上的中點(diǎn)處,線段A1B1交BC于點(diǎn)G,若AB=6,AD=9,則CG的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,點(diǎn)從點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.
(1)當(dāng)為何值時(shí),;
(2)當(dāng),求的值;
(3)能否與相似?若能,求出的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OB⊥OA,且OB=2OA,點(diǎn)A的坐標(biāo)是(-1,2).
(1)求點(diǎn)B的坐標(biāo);
(2)求過點(diǎn)A、O、B的拋物線的表達(dá)式;
(3)連接AB,在(2)中的拋物線上是否存在點(diǎn)P,使得S△ABP=S△ABO.若存在,請直接寫出點(diǎn)P的坐標(biāo)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com