已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P(1,1)為圓心的⊙P與x軸,y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連接PF,過點(diǎn)PE⊥PF交y軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間是t秒(t>0)
(1)若點(diǎn)E在y軸的負(fù)半軸上(如圖所示),求證:PE=PF;
(2)在點(diǎn)F運(yùn)動(dòng)過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點(diǎn)F關(guān)于點(diǎn)M的對(duì)稱點(diǎn)F′,經(jīng)過M、E和F′三點(diǎn)的拋物線的對(duì)稱軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似?若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.
(1)證明見解析;(2)b=2+a或2﹣a;(3)當(dāng)或或或時(shí),以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似.
【解析】
試題分析:(1)連接PM,PN,運(yùn)用△PMF≌△PNE證明.
(2)分兩種情況①當(dāng)t>1時(shí),點(diǎn)E在y軸的負(fù)半軸上,0<t≤1時(shí),點(diǎn)E在y軸的正半軸或原點(diǎn)上,再根據(jù)(1)求解.
(3)分兩種情況,當(dāng)1<t<2時(shí),當(dāng)t>2時(shí),三角形相似時(shí)還各有兩種情況,根據(jù)比例式求出時(shí)間t:
如答圖3,(Ⅰ)當(dāng)1<t<2時(shí),
∵F(1+t,0),F(xiàn)和F′關(guān)于點(diǎn)M對(duì)稱,∴F′(1﹣t,0).
∵經(jīng)過M、E和F′三點(diǎn)的拋物線的對(duì)稱軸交x軸于點(diǎn)Q,∴Q(1﹣t,0).∴OQ=1﹣t.
由(1)得△PMF≌△PNE ,∴NE=MF=t,∴OE=t﹣1.
當(dāng)△OEQ∽△MPF時(shí),,即,
解得,(舍去).
當(dāng)△OEQ∽△MFP時(shí),,即,解得,(舍去).
(Ⅱ)如答圖4,當(dāng)t>2時(shí),
∵F(1+t,0),F(xiàn)和F′關(guān)于點(diǎn)M對(duì)稱,∴F′(1﹣t,0)
∵經(jīng)過M、E和F′三點(diǎn)的拋物線的對(duì)稱軸交x軸于點(diǎn)Q,∴Q(1﹣t,0)∴OQ=t﹣1,
由(1)得△PMF≌△PNE ∴NE=MF=t.∴OE=t﹣1.
當(dāng)△OEQ∽△MPF時(shí),,即,無(wú)解.
當(dāng)△OEQ∽△MFP時(shí),∴,即,解得,.
綜上所述,當(dāng)或或或時(shí),以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似.
試題解析:【解析】
(1)證明:如答圖1,連接PM,PN,
∵⊙P與x軸,y軸分別相切于點(diǎn)M和點(diǎn)N,
∴PM⊥MF,PN⊥ON且PM=PN
∴∠PMF=∠PNE=90°且∠NPM=90°.
∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE.
在△PMF和△PNE中,,
∴△PMF≌△PNE(ASA).∴PE=PF.
(2)①當(dāng)t>1時(shí),點(diǎn)E在y軸的負(fù)半軸上,如答圖1,
由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1.
∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,
∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a.
②0<t≤1時(shí),如答圖2,點(diǎn)E在y軸的正半軸或原點(diǎn)上,
同理可證△PMF≌△PNE,
∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,
∴b+a=1+t+1﹣t=2,
∴b=2﹣a,
(3)當(dāng)或或或時(shí),以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似.
考點(diǎn):1.單動(dòng)點(diǎn)和軸對(duì)稱問題;2.切線的性質(zhì);3.全等三角形的判定和性質(zhì);4.相似三角形的判定和性質(zhì);5.分類思想和方程思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,AB是⊙O的直徑,C、P是上兩點(diǎn),AB=13,AC=5,
(1)如圖(1),若點(diǎn)P是的中點(diǎn),求PA的長(zhǎng);
(2)如圖(2),若點(diǎn)P是的中點(diǎn),求PA得長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖的幾何體是由一個(gè)圓柱體和一個(gè)長(zhǎng)方形組成的,則這個(gè)幾何體的俯視圖是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,在地面上的點(diǎn)A處測(cè)得樹頂B的仰角為α度,AC=7米,則樹高BC為 米(用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,⊙O的直徑CD垂直弦AB于點(diǎn)E,且CE=2,DE=8,則AB的長(zhǎng)為( )
(A)2 (B)4 (C)6 (D)8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:解答題
已知在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于點(diǎn)C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,由四個(gè)小正方體組成的幾何體中,若每個(gè)小正方體的棱長(zhǎng)都是1,則該幾何體俯視圖的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:解答題
一個(gè)不透明的袋中裝有20個(gè)只有顏色不同的球,其中5個(gè)黃球、8個(gè)黑球、7個(gè)紅球
(1)求從袋中摸出一個(gè)球是黃球的概率;
(2)現(xiàn)從袋中取出若干個(gè)黑球,攪勻后,使從袋中摸出一個(gè)黑球的概率是,求從袋中取出黑球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:選擇題
( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com