【題目】如圖,⊙O的半徑OA⊥OC,點D在上,且=2,OA=4.

(1)∠COD=    °;

(2)求弦AD的長;

(3)P是半徑OC上一動點,連結(jié)AP、PD,請求出AP+PD的最小值,并說明理由.

(解答上面各題時,請按題意,自行補足圖形)

【答案】(1)30;(2)弦AD長為4;(3)AP+PD的最小值為,理由見解析.

【解析】(本小題滿分12分)

解:(1)30;……………………………………………………………………1分

(2)連結(jié)OD、AD(如圖2).

∵OA⊥OC,∴∠AOC=90°.∵=2,

設(shè)所對的圓心角∠COD=,………………………………………………1分

則∠AOD=,…………………………………………………………………2分

由∠AOD+∠DOC=90°,

=90°,∴=30°,=60°,…………………………3分

即∠AOD=60°,又∵OA=OD,∴△AOD為等邊三角形,…………4分

∴AD=OA=4;…………………………………………………………………5分

(3)過點D作DE⊥OC,交⊙O于點E,……………………………………1分

連結(jié)AE,交OC于點P(如圖3),………………………………………………2分

則此時,AP+PD的值最。

∵根據(jù)圓的對稱性,點E是點D關(guān)于OC的對稱點,

OC是DE的垂直平分線,即PD=PE.………………………………………3分

∴AP+PD=AP+PE=AE,

若在OC上另取一點F,連結(jié)AF、FD及EF,

在△AFE中,AF+FE>AE,

即AF+FE>AP+PD,

∴可知AP+PD最。捶

∵∠AED=∠AOD=30°,

又∵OA⊥OC,DE⊥OC,∴OA∥DE,

∴∠OAE=∠AED=30°.

延長AO交⊙O于點B,連結(jié)BE,∵AB為直徑,

∴△ABE為直角三角形.由=cos∠BAE,……………………………5分

得AE=AB·cos30°=2×4×,……………………………6分

即AP+PD=,

[也可利用勾股定理求得AE]

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知m+n=2,mn=-2,(2-m)(2-n)的值為(  )

A. 2 B. -2 C. 0 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形EFGH的三個頂點E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.

(1)求證:HEA=CGF;

(2)當AH=DG時,求證:菱形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是4,DAC的角平分線交DC于點E,點PQ分別是邊ADAE上的動點(兩動點不重合).

1PQ+DQ的最小值是   

2)說出PQ+DQ取得最小值時,點P、Q的位置,并在圖中畫出;

3)請對(2)中你所給的結(jié)論進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是(  )

A. 平行四邊形的對角線相等 B. 矩形的對角線平分對角

C. 菱形的對角線互相平分 D. 梯形的對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】月初,明斯克航母告別鹽田,據(jù)不完全估算,16年間累計接待游客11000000人次,11000000用科學記數(shù)法表示是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的頂點M是直線=-和直線的交點.

(1)若直線過點D(0,-3),求M點的坐標及二次函數(shù)的解析式;

(2)試證明無論取任何值,二次函數(shù)的圖象與直線總有兩個不同的交點;

(3)在(1)的條件下,若二次函數(shù)的圖象與軸交于點C,與的右交點為A,試在直線=-上求異于M的點P,使P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從家里出發(fā)到超市買東西,再回到家,他離家的距離y(千米)與時間t(分鐘)的關(guān)系如圖所示.請你根據(jù)圖象回答下列問題:

(1)小明家離超市的距離是   千米;

(2)小明在超市買東西時間為   小時;

(3)小明去超市時的速度是    千米/小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x,求x6+x5+2x4-4x3+3x2+4x-4的整數(shù)部分.

查看答案和解析>>

同步練習冊答案