【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛,設(shè)慢車行駛的時間xh),兩車之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系.根據(jù)圖象回答:

1)甲、乙兩地之間的距離為   ;

2)兩車同時出發(fā)后   h相遇;

3)慢車的速度為   千米/小時;快車的速度為   千米/小時;

4)線段CD表示的實際意義是   

【答案】(1) 900km;(2)4;(3) 75,150;(4) 快車到達(dá)乙地后,慢車?yán)^續(xù)行駛到甲地.

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到甲乙兩地之間的距離;
2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到兩車同時出發(fā)多長時間相遇;
3)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以計算出快車和慢車的速度;
4)根據(jù)題意可以寫出線段CD表示的實際意義.

1)由圖象可得,

甲、乙兩地之間的距離為900km,

故答案為:900km

2)由圖象可得,

兩車同時出發(fā)后4h相遇,

故答案為:4;

3)慢車的速度為:900÷1275km/h

快車的速度為:900÷475150km/h,

故答案為:75150;

4)線段CD表示的實際意義是快車到達(dá)乙地后,慢車?yán)^續(xù)行駛到甲地,

故答案為:快車到達(dá)乙地后,慢車?yán)^續(xù)行駛到甲地.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了分析九年級學(xué)生藝術(shù)考試的成績,隨機(jī)抽查了兩個班級的各5名學(xué)生的成績,它們分別是:

九(1)班:96,9294,9796

九(2)班:90,9897,98,92

通過數(shù)據(jù)分析,列表如下:

1

2)計算兩個班級所抽取的學(xué)生藝術(shù)成績的方差,判斷哪個班學(xué)生藝術(shù)成績比較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在平面直角坐標(biāo)系中,ABC的位置如圖所示:

1)請寫出點AB、C三點的坐標(biāo).

2)將ABC向右平移6個單位,再向上平移2個單位,請在圖中作出平移后的ABC',并寫出它們的坐標(biāo):A'(  ),B'(  ),C'(  ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點軸交于點動點沿的邊以每秒個單位長度的速度由起點向終點運(yùn)動,過點軸的垂線,交的另一邊于點沿折疊,使點落在點處,設(shè)點的運(yùn)動時間為秒.

1)求拋物線的解析式;

2N為拋物線上的點(不與點重合)且滿足直接寫出點的坐標(biāo);

3)是否存在某一時刻,使的面積最大,若存在,求出的值和最大面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

122+0+(﹣0.22014×52014

2)(2a3b3(﹣8ab2÷(﹣4a4b3

3)(2a+12﹣(2a+1)(﹣1+2a

4201922018×2020(運(yùn)用整式乘法公式進(jìn)行計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.

(1)求拋物線的表達(dá)式;
(2)直接寫出點C的坐標(biāo),并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于第四象限,當(dāng)△ABP的面積為6時,求出點P的坐標(biāo);
(4)若點M在直線BH上運(yùn)動,點N在x軸上運(yùn)動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF90°,且EF交正方形外角的平分線CF于點F

1)求證:AEEF

2)(探究1)變特殊為一般:若題中“點E是邊BC的中點”變?yōu)椤包cEBC邊上任意一點”,則上述結(jié)論是否仍然成立?(填“是”或“否”).

3)(探究2)在探究1的前提下,若題中結(jié)論“AEEF”與條件“CF是正方形外角的平分線”互換,則命題是否還成立?請給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣2x+c的對稱軸為直線x=﹣1,頂點為A,與y軸正半軸交點為B,且△ABO的面積為1.

(1)求拋物線的表達(dá)式;
(2)若點P在x軸上,且PA=PB,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案