【題目】如圖,AB為⊙O的直徑,點C、D都在⊙O上,且CD平分∠ACB,交AB于點E.
(1)求證:∠ABD=∠BCD;
(2)若DE=13,AE=17,求⊙O的半徑;
(3)DF⊥AC于點F,試探究線段AF、DF、BC之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)見解析;(2)12;(3)AF+BC=DF,理由見解析
【解析】
(1)由CD平分∠ACB,根據(jù)圓周角定理,可得∠ACD=∠BCD=∠ABD;
(2)過點E作EM⊥AD于點M,求出AD長,則AB=AD,可求出AB,則答案得出;
(3)過點D作DN⊥CB,交CB的延長線于點N,可證明△DAF≌△DBN,則AF=BN,DF=CF則結(jié)論AF+BC=DF可得出.
(1)證明:∵CD平分∠ACB,
∴∠ACD=∠BCD,
∵∠ACD=∠ABD,
∴∠ABD=∠BCD;
(2)解:如圖1,過點E作EM⊥AD于點M,
∵AB為⊙O的直徑,
∴∠ACB=90°,∠ADB=90°,
∴∠DAB=∠BCD=45°,
∵AE=17,
∴ME=AM=17×=,
∵DE=13,
∴DM=
∴AD=AM+DM=,
∴AB=AD=
∴AO==12;
(3)AF+BC=DF.理由如下:
如圖2,過點D作DN⊥CB,交CB的延長線于點N,
∵四邊形DACB內(nèi)接于圓,
∴∠DBN=∠DAF,
∵DF⊥AC,DN⊥CB,CD平分∠ACB,
∴∠AFD=∠DNB=90°,DF=DN,
∴△DAF≌△DBN(AAS),
∴AF=BN,CF=CN,
∵∠FCD=45°,
∴DF=CF,
∴CN=BN+BC=AF+BC=DF.
即AF+BC=DF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,,點D是AB上一點(點D與A,B不重合),連接CD.
(1)用尺規(guī)作圖,線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連接DE交BC于點F,連接BE;(保留作圖痕跡,不寫作法.)
(2)當AD=BF時,求∠BEF的度數(shù).
(3)求證:AD2+BD2=2CD2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于A(﹣2,0),點B(4,0).
(1)求拋物線的解析式;
(2)若點M是拋物線上的一動點,且在直線BC的上方,當S△MBC取得最大值時,求點M的坐標;
(3)在直線的上方,拋物線是否存在點M,使四邊形ABMC的面積為15?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,動點從點出發(fā),以每秒個單位長度的速度沿著方向向點運動,動點從點出發(fā),以每秒個單位長度的速度沿著方向向點運動,如果,兩點同時出發(fā),當到達點處時,兩點都停止運動.設運動的時間為秒,的面積為.
(1)用含的代數(shù)式表示:
, , ;
(2)求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點,且AD平分∠CAB,作DE⊥AB于點E.
(1)求證:AC∥OD;
(2)若OE=4,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在硬地上拋擲一枚圖釘,通常會出現(xiàn)兩種情況:
下面是小明和同學做“拋擲圖釘實驗”獲得的數(shù)據(jù):
拋擲次數(shù)n | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
針尖不著地的頻數(shù)m | 63 | 120 | 186 | 252 | 310 | 360 | 434 | 488 | 549 | 610 |
針尖不著地的頻率 | 0.63 | 0.60 | 0.63 | 0.60 | 0.62 | 0.61 |
(1)填寫表中的空格;
(2)畫出該實驗中,拋擲圖釘釘尖不著地頻率的折線統(tǒng)計圖;
(3)根據(jù)“拋擲圖釘實驗”的結(jié)果,估計“釘尖著地”的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形)。
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1
(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標;
(3)在第(2)問中,點B旋轉(zhuǎn)到點B2的過程中運動的路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.
(1)這50名同學捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】臨近期末考試,心理專家建議考生可通過以下四種方式進行考前減壓:.享受美食,.交流談心,.體育鍛煉,.欣賞藝術(shù).
(1)隨機采訪一名九年級考生,選擇其中某一種方式,他選擇“享受美食”的概率是 .
(2)同時采訪兩名九年級考生,請用畫樹狀圖或列表的方法求他們中至少有一人選擇“欣賞藝術(shù)”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com