【題目】如圖,在中,,,點D為的中點,直角繞點D旋轉(zhuǎn),,分別與邊,交于E,F兩點,下列結(jié)論:①是等腰直角三角形;②;③;④,其中正確結(jié)論是( ).
A.①②④B.②③④C.①②③D.①②③④
【答案】C
【解析】
根據(jù)等腰直角三角形的性質(zhì)可得∠CAD=∠B=45°,根據(jù)同角的余角相等求出∠ADF=∠BDE,然后利用“角邊角”證明△BDE和△ADF全等,判斷出③正確;根據(jù)全等三角形對應(yīng)邊相等可得DE=DF、BE=AF,從而得到△DEF是等腰直角三角形,判斷出①正確;再求出AE=CF,判斷出②正確;根據(jù)BE+CF=AF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CF>EF,判斷出④錯誤.
解:∵,,
∴△ABC是等腰直角三角形,∠C=∠B=45°,
∵點D為BC中點,
∴AD=CD=BD,AD⊥BC,∠CAD=45°,
∴∠CAD=∠B=45°,
∵∠MDN是直角,
∴∠ADF+∠ADE=90°,
∵∠BDE+∠ADE=∠ADB=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中,,
∴△BDE≌△ADF(ASA),
故③正確;
∴DE=DF、BE=AF,
∴△DEF是等腰直角三角形,
故①正確;
∵AE=AB-BE,CF=AC-AF,
∴AE=CF,
故②正確;
∵BE+CF=AF+AE, AF+AE>EF,
∴BE+CF>EF,
故④錯誤;
綜上所述,正確的結(jié)論有①②③;
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,正方形ABCD的邊AB在x軸上,A(﹣4,0),B(﹣2,0),定義:若某個拋物線上存在一點P,使得點P到正方形ABCD四個頂點的距離相等,則稱這個拋物線為正方形ABCD的“友好拋物線”.若拋物線y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好拋物線”,則n的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為 ______________.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/4/1916730188324864/1920418179735552/STEM/955c40623e644964ae11bcb49c75f843.png]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.
(1)求反比例函數(shù)的解析式;
(2)若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A﹙-2,-5﹚、C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)y=和一次函數(shù)y=kx+b的表達式;
(2)連接OA、OC,求△AOC的面積;
(3)寫出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“朗讀者”節(jié)目的影響下,某中學開展了“好書伴我成長”的讀書活動,為了解3月份七年級300名學生讀書情況,隨機調(diào)查了七年級50個學生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 4 | 12 | 16 | 17 | 1 |
關(guān)于這組數(shù)據(jù),下列說法正確的是( )
A. 眾數(shù)是 17 B. 平均數(shù)是 2 C. 中位數(shù)是 2 D. 方差是 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)).
若該二次函數(shù)的圖象與兩坐標軸有三個不同的交點,求的取值范圍;
已知該二次函數(shù)的圖象與軸交于點和點,與軸交于點,頂點為,若存在點使得與面積相等,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com