【題目】甲、乙兩車從A地將一批物品勻速運(yùn)往B地,已知甲出發(fā)0.5h后乙開始出發(fā),如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖中的信息解決如下問題:

(1)計(jì)算甲、乙兩車的速度及a的值;
(2)乙車到達(dá)B地后以原速立即返回.
①在圖中畫出乙車在返回過程中離A地的距離S(km)與時(shí)間t(h)的函數(shù)圖象;
②請(qǐng)問甲車在離B地多遠(yuǎn)處與返程中的乙車相遇?

【答案】
(1)解:由題意可知M(0.5,0),線段OP、MN都經(jīng)過(1.5,60),

甲車的速度60÷1.5=40km/小時(shí),

乙車的速度60÷(1.5﹣0.5)=60km/小時(shí),

a=40×4.5=180km;


(2)解:①∵180÷60=3小時(shí),

∴乙車到達(dá)B地,所用時(shí)間為180÷60=3,所以點(diǎn)N的橫坐標(biāo)為3.5,

6.5小時(shí)返回A地,

乙車在返回過程中離A地的距離S(km)與時(shí)間t(h)的函數(shù)圖象為線段NQ;

②甲車離A地的距離是:40×3.5=140km;

設(shè)乙車返回與甲車相遇所用時(shí)間為t0,

則(60+40)t0=180﹣140,

解得t0=0.4h,

60×0.4=24km,

答:甲車在離B地24km處與返程中的乙車相遇.


【解析】(1)根據(jù)圖像可知M(0.5,0),線段OP、MN都經(jīng)過(1.5,60),求出甲車的速度和乙車的速度;(2)根據(jù)題意找出相等的關(guān)系量,求出乙車到達(dá)B地所用時(shí)間,求出點(diǎn)N的橫坐標(biāo),根據(jù)圖像求出甲車離A地的距離,求出甲車在離B地24km處與返程中的乙車相遇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,△ABC的頂點(diǎn)和線段EF的端點(diǎn)都在邊長為1的小正方形的格點(diǎn)上.請(qǐng)你在圖中找出一點(diǎn)D(僅一個(gè)點(diǎn)即可),連結(jié)DE,DF,使△DEF與△ABC全等,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC6cm,射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG1cm/s的速度運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動(dòng).如果點(diǎn)E、F同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s)當(dāng)t______s時(shí),以A、CE、F為頂點(diǎn)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育課上,老師為了解初三女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測(cè)試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.

(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個(gè)以上(含3個(gè))為優(yōu)秀,全校有初三女生400人,從中任選一位女生,求選到的女生投籃成績?yōu)椤皟?yōu)秀”等級(jí)的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用1來表示的小數(shù)部分,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分又例如:因?yàn)?/span>,即23,所以的整數(shù)部分為2,小數(shù)部分為(2

請(qǐng)解答:

1的整數(shù)部分是   ,小數(shù)部分是   ;

2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為4028,則△EDF的面積為( 。

A. 12 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線C1:y=x2﹣2a x+2a+2 頂點(diǎn)P在另一個(gè)函數(shù)圖象C2
(1)求證:拋物線C1必過定點(diǎn)A(1,3);并用含的a式子表示頂點(diǎn)P的坐標(biāo);
(2)當(dāng)拋物線C1的頂點(diǎn)P達(dá)到最高位置時(shí),求拋物線C1解析式;并判斷是否存在實(shí)數(shù)m、n,當(dāng)m≤x≤n時(shí)恰有3m≤y≤3n,若存在,求出求m、n的值;若不存在,說明理由;
(3)拋物線C1和圖象C2分別與y軸交于B、C點(diǎn),當(dāng)△ABC為等腰三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(2018×(﹣2019×(﹣1)2017;

(2)[(x﹣y)2+(x+y)(x﹣y)]÷2x;

(3)(x+2y﹣3)(x﹣2y+3);

(4)(1﹣)÷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)y= 的圖象相交于A、B兩點(diǎn),一次函數(shù)的圖象與y軸相交于點(diǎn)C,已知點(diǎn)A(4,1)

(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標(biāo)原點(diǎn)),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案