【題目】已知:線段,以為公共邊,在兩側(cè)分別作和,并使.點(diǎn)在射線上.
(1)如圖l,若,求證:;
(2)如圖2,若,請(qǐng)?zhí)骄?/span>與的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;
(3)如圖3,在(2)的條件下,若,過(guò)點(diǎn)作交射線于點(diǎn),當(dāng)時(shí),求的度數(shù).
【答案】(1)見(jiàn)詳解;(2)+2=90°,理由見(jiàn)詳解;(3)99°.
【解析】
(1)根據(jù)平行線的性質(zhì)和判定定理,即可得到結(jié)論;
(2)設(shè)CE與BD交點(diǎn)為G,由三角形外角的性質(zhì)得∠CGB=∠D+∠DAE,由,得∠CGB+∠C=90°,結(jié)合,即可得到結(jié)論;
(3)設(shè)∠DAE=x,則∠DFE=8x,由,+2=90°,得關(guān)于x的方程,求出x的值,進(jìn)而求出∠C,∠ADB的度數(shù),結(jié)合∠BAD=∠BAC,即可求解.
(1)∵,
∴∠C+∠CBD=180°,
∵,
∴∠D+∠CBD=180°,
∴;
(2)+2=90°,理由如下:
設(shè)CE與BD交點(diǎn)為G,
∵∠CGB是ADG的外角,
∴∠CGB=∠D+∠DAE,
∵,
∴∠CBD=90°,
∴在BCG中,∠CGB+∠C=90°,
∴∠D+∠DAE+∠C=90°,
又∵,
∴+2=90°;
(3)設(shè)∠DAE=x,則∠DFE=8x,
∴∠AFD=180°-8x,
∵,
∴∠C=∠AFD=180°-8x,
又∵+2=90°,
∴x+2(180°-8x)=90°,解得:x=18°,
∴∠C=180°-8x=36°=∠ADB,
又∵∠BAD=∠BAC,
∴∠ABC=∠ABD=∠CBD=45°,
∴∠BAD=180°-45°-36°=99°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察表格:根據(jù)表格解答下列問(wèn)題:
x | 0 | 1 | 2 |
ax2 | 0 | 1 | 4 |
ax2+bx+c | ﹣3 | -4 | ﹣3 |
(l)求a,b,c的值;
(2)在如圖的直角坐標(biāo)系中畫出函數(shù)y=ax2+bx+c的圖象,并根據(jù)圖象,直接寫出當(dāng)x取什么實(shí)數(shù)時(shí),不等式ax2+bx+c>﹣3成立;
(3)該圖象與x軸兩交點(diǎn)從左到右依次分別為A、B,與y軸交點(diǎn)為C,求過(guò)這三個(gè)點(diǎn)的外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn), .將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得,連接.
(1)求證: 是等邊三角形;
(2)當(dāng)時(shí),試判斷的形狀,并說(shuō)明理由;
(3)探究:當(dāng)為多少度時(shí), 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中雅培粹學(xué)校舉辦運(yùn)動(dòng)會(huì),全校有3000名同學(xué)報(bào)名參加校運(yùn)會(huì),為了解各類運(yùn)動(dòng)賽事的分布情況,從中抽取了部分同學(xué)進(jìn)行統(tǒng)計(jì):A.田徑類,B.球類,C.團(tuán)體類,D.其他,并將統(tǒng)計(jì)結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)這次統(tǒng)計(jì)共抽取了 位同學(xué),扇形統(tǒng)計(jì)圖中的 ,的度數(shù)是 ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)估計(jì)全校共多少學(xué)生參加了球類運(yùn)動(dòng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若四邊形中某個(gè)頂點(diǎn)與其它三個(gè)頂點(diǎn)的距離相等,則這個(gè)四邊形叫做等距四邊形,這個(gè)頂點(diǎn)叫做這個(gè)四邊形的等距點(diǎn).
(1)判斷:一個(gè)內(nèi)角為120°的菱形 等距四邊形.(填“是”或“不是”)
(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點(diǎn),請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找出C、D兩個(gè)格點(diǎn),使得以A、B、C、D為頂點(diǎn)的四邊形為互不全等的“等距四邊形”,畫出相應(yīng)的“等距四邊形”,并寫出該等距四邊形的端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng).端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為 端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為
(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點(diǎn)的等距四邊形,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線與在第一象限內(nèi)的圖象如圖,作一條平行于x軸的直線交y1,y2于B、A,連接OA,過(guò)B作BC∥OA,交x軸于點(diǎn)C,若四邊形OABC的面積為3,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫圖題:(1)如圖,圖①、圖②、圖③均為4×2的正方形網(wǎng)格,△ABC的頂點(diǎn)均在格點(diǎn)上,按要求在圖②、圖③中各畫一個(gè)頂點(diǎn)在格點(diǎn)上的三角形(要求:所畫的兩個(gè)三角形都與△ABC相似但都不與△ABC全等,圖②和圖③中新畫的三角形不全等,并寫出所畫圖形與原圖形的相似比).
(2)在邊長(zhǎng)為1的方格紙中,以格點(diǎn)連線為邊的三角形叫做格點(diǎn)三角形.
①如圖④,請(qǐng)你在所給的方格紙中,以O為位似中心,畫出一個(gè)與△ABC位似的格點(diǎn)△A1B1C1,且△A1B1C1與△ABC的位似比為2:1;
②求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過(guò)點(diǎn)B的直線l是⊙O的切線,點(diǎn)D是直線l上一點(diǎn),過(guò)點(diǎn)D作DE⊥CB交CB延長(zhǎng)線于點(diǎn)E,連接AD,交⊙O于點(diǎn)F,連接BF、CD交于點(diǎn)G.
(1)求證:△ACB∽△BED;
(2)當(dāng)AD⊥AC時(shí),求 的值;
(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com