【題目】如圖,反比例函數(shù)的圖象與正比例函數(shù)的圖象交于點(diǎn),且點(diǎn)的橫坐標(biāo)為2.
(1)求反比例函數(shù)的表達(dá);
(2)若射線上有點(diǎn),,過點(diǎn)作與軸垂直,垂足為點(diǎn),交反比例函數(shù)圖象于點(diǎn),連接,,請求出的面積.
【答案】(1)y=(x>0);(2)△OAB的面積為8.
【解析】
(1)將A點(diǎn)的橫坐標(biāo)代入正比例函數(shù),可求出A點(diǎn)坐標(biāo),再將A點(diǎn)坐標(biāo)代入反比例函數(shù)求出k,即可得解析式;
(2)過A點(diǎn)作AN⊥OM,垂足為點(diǎn)N,則AN∥PM,根據(jù)平行線分線段成比例得,進(jìn)而求出M點(diǎn)坐標(biāo),將M點(diǎn)的橫坐標(biāo)分別代入反比例函數(shù)和正比例函數(shù),求出B、P的坐標(biāo),再利用三角形面積公式求出△POM、△BOM的面積,作差得到△BOP的面積,最后根據(jù)S△OAB∶S△BAP=OA∶AP=1∶2即可求解.
解:(1)A點(diǎn)在正比例函數(shù)y=x的圖象上,當(dāng)x=2時(shí),y=3,
∴點(diǎn)A的坐標(biāo)為(2,3)
將(2,3)代入反比例函數(shù)解析式y= (x>0),得,解得k=6.
∴反比例函數(shù)的表達(dá)式為y=(x>0)
(2)如圖,過A點(diǎn)作AN⊥OM,垂足為點(diǎn)N,則AN∥PM,
∴.
∵PA=2OA,
∴MN=2ON=4,
∴OM=ON+MN=2+4=6
∴M點(diǎn)的坐標(biāo)為(6,0)
將x=6代入y=,得y==1,
∴點(diǎn)B的坐標(biāo)為(6,1)
將x=6代入y=x,得y==9,
∴點(diǎn)P的坐標(biāo)為(6,9).
∴S△POM=×6×9=27,S△BOM=×6×1=3
∴S△BOP=27-3=24
又∵S△OAB∶S△BAP=OA∶AP=1∶2
∴S△OAB=×24=8
答:△OAB的面積為8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進(jìn)一步證明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的x、y的部分對應(yīng)值如表:
x | ﹣1 | 0 | 1 | 2 | 3 |
y | 5 | 1 | ﹣1 | ﹣1 | 1 |
(1)拋物線的對稱軸是_____;
(2)不等式ax2+bx+c﹣1<0的解集是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+6交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),交y軸于點(diǎn)C,頂點(diǎn)為D,對稱軸分別交x軸、線段AC于點(diǎn)E、F.
(1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);
(2)連結(jié)AD,CD,求△ACD的面積;
(3)設(shè)動點(diǎn)P從點(diǎn)D出發(fā),沿線段DE勻速向終點(diǎn)E運(yùn)動,取△ACD一邊的兩端點(diǎn)和點(diǎn)P,若以這三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,且P為頂角頂點(diǎn),求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)下載一個(gè)APP,繳納一定數(shù)額的押金,就能以每小時(shí)0.5到1元的價(jià)格解鎖一輛自行車任意騎行…最近的網(wǎng)紅非“共享單車”莫屬.共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們在享受科技進(jìn)步、共享經(jīng)濟(jì)帶來的便利的同時(shí),隨意停放、加裝私鎖、大卸八塊等毀壞單車的行為也層出不窮.某共享單車公司一月投入部分自行車進(jìn)入市場,一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進(jìn)入市場,使可使用的自行車達(dá)到7500輛.
(1)一月份該公司投入市場的自行車至少有多少輛?
(2)二月份的損壞率達(dá)到20%,進(jìn)入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關(guān)注,毀壞共享單車的行為引起了一場國民素質(zhì)的大討論,三月份的損壞率下降a%,三月底可使用的自行車達(dá)到7752輛,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn),對稱軸是經(jīng)過且平行于軸的直線.
(1)求,的值.
(2)如圖,一次函數(shù)的圖象經(jīng)過點(diǎn),與軸相交于點(diǎn),與二次函數(shù)的圖象相交于另一點(diǎn),點(diǎn)在點(diǎn)的右側(cè),,求一次函數(shù)的表達(dá)式,
(3)直接寫出時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題提出]
在判定兩個(gè)三角形全等時(shí),除根據(jù)一般三角形全等判定定理外,還有"" 方法.類似的,我們對直角三角形相似的條件進(jìn)行探索。
(1) [提出猜想]
除根據(jù)一般三角形相似判定的條件外,請你提出類似于""的判定直角三角形相似的方法,并用文字描述為: .
(2) [初步思考]
其中,我們不妨將問題用符號語言表示為:如圖1,在和中,,若 ,則, 請給予證明.
(3) [深入研究]
若圖2中的,其他條件不變,兩個(gè)三角形是否相似?試?yán)靡陨咸骄康慕Y(jié)論解決問題,若相似請證明,若不相似,請畫出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=10m,求樹高AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com