【題目】如圖1,二次函數(shù)的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0)

1b=  ,點(diǎn)B的坐標(biāo)是  ;

2)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由

3)如圖2,點(diǎn)D是拋物線上第二象限內(nèi)的一動(dòng)點(diǎn),過點(diǎn)DDMAC于點(diǎn)M,是否存在點(diǎn)D,使得CDM中的某個(gè)角恰好等于∠BAC2倍?若存在,寫出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說明理由

【答案】1)﹣,(,0);(2)∠CBA=2CAB,見解析;(3)存在,-1

【解析】

1)把點(diǎn)A的坐標(biāo),代入函數(shù)解析式可求出b的值,代入y=0求出x值,進(jìn)而可得出點(diǎn)B的坐標(biāo);

2)作∠CBA的角平分線,交y軸于點(diǎn)E,過點(diǎn)EEFBC于點(diǎn)F,設(shè)OE=n,則CE=2-n,EF=n,利用面積法可求出n值,進(jìn)而可得出==,結(jié)合∠AOC=90°=BOE可證出AOC∽△BOE,根據(jù)相似三角形的性質(zhì)可得出∠CAO=EBO,再根據(jù)角平分線的性質(zhì)可得出∠CBA=2EBO=2CAB,此題得解;

3)過點(diǎn)DDRy垂足為RDRAC與點(diǎn)G,在AB上找點(diǎn)E使,分當(dāng)=2時(shí)和當(dāng)=2時(shí)兩種情況討論.

1)把A(﹣4,0)代入得,

∴﹣4b+2=0,

b=

當(dāng)y=0時(shí),有,

解得:x1=4x2=,

∴點(diǎn)B的坐標(biāo)為(0).

故答案為:﹣;(,0).

2)∠CBA=2CAB,理由如下:

作∠CBA的角平分線,交y軸于點(diǎn)E,過點(diǎn)EEFBC于點(diǎn)F,如圖所示.

∵點(diǎn)B,0),點(diǎn)C0,2),

OB=OC=2,BC=

設(shè)OE=n,則CE=2n,EF=n

由面積法,可知:OBCE=BCEF,即2n=n,

解得:n=

==,∠AOC=90°=BOE,

∴△AOC∽△BOE,

∴∠CAO=EBO

∴∠CBA=2EBO=2CAB

3)如圖所示:過點(diǎn)DDRy垂足為R,DRAC與點(diǎn)G,在AB上找點(diǎn)E使, DGAB,∠G=BAC,∠CEO=2BAC,

A-40),B,0),C02),

在直角三角形EOC中,

即:

解得:OE=

=,=

設(shè)D,

當(dāng)=2時(shí),

∵∠MCD=CDG+G

=,

解得:=0(不符合題意,舍去),=-1

∴點(diǎn)D的橫坐標(biāo)是-1

當(dāng)=2時(shí),則∠CDM=CEO

設(shè)CM=4k,DM=3k,則CD=5k,

=,則MG=6kDG=,CG=2k

AC=

CR=,, ,

,

解得:=0(不符合題意,舍去),=

點(diǎn)D的橫坐標(biāo)是

綜上所述,點(diǎn)D的橫坐標(biāo)是-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,的中線,上一動(dòng)點(diǎn),將沿折疊,點(diǎn)落在點(diǎn)處,與線段交于點(diǎn),若是直角三角形,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形方格中,的頂點(diǎn)都在邊長為1的小正方形的頂點(diǎn)上.

1)填空: , ;

2)判斷是否相似,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】精準(zhǔn)扶貧這是新時(shí)期黨和國家扶貧工作的精髓和亮點(diǎn).某校團(tuán)委隨機(jī)抽取部分學(xué)生,對(duì)他們是否了解關(guān)于精準(zhǔn)扶貧的情況進(jìn)行調(diào)查,調(diào)查結(jié)果有三種:A、了解很多;B、了解一點(diǎn);C、不了解.團(tuán)委根據(jù)調(diào)查的數(shù)據(jù)進(jìn)行整理,繪制了尚不完整的統(tǒng)計(jì)圖如下,圖1C區(qū)域的圓心角為36°,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的相關(guān)的信息,解答下列問題:

(1)求本次活動(dòng)共調(diào)查了   名學(xué)生;圖1中,B區(qū)域的圓心角度是   ;在抽取的學(xué)生中調(diào)查結(jié)果的中位數(shù)落在   區(qū)域里.

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若該校有1200名學(xué)生,請(qǐng)估算該校不是了解很多的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以平行四邊形ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G,延長DE,BA交于點(diǎn)H,若∠ADC=60°,則=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,在弧AB上取點(diǎn)P,連接APBP,過點(diǎn)DDQAP交⊙O于點(diǎn)Q,連接BQ 已知BP=1,BQ=3,PQ的長為 ,AP的長為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn),函數(shù)y=的圖象上的整點(diǎn)的個(gè)數(shù)是(  )

A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 8個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定,以二次函數(shù)y=ax2+bx+c的二次項(xiàng)系數(shù)a2倍為一次項(xiàng)系數(shù),一次項(xiàng)系數(shù)b為常數(shù)項(xiàng)構(gòu)造的一次函數(shù)y=2ax+b叫做二次函數(shù)y=ax2+bx+c子函數(shù),反過來,二次函數(shù)y=ax2+bx+c叫做一次函數(shù)y=2ax+b母函數(shù)

1)若一次函數(shù)y=2x-4是二次函數(shù)y=ax2+bx+c子函數(shù),且二次函數(shù)經(jīng)過點(diǎn)(30),求此二次函數(shù)的解析式及頂點(diǎn)坐標(biāo).

2)若子函數(shù)y=x-6母函數(shù)的最小值為1,求母函數(shù)的函數(shù)表達(dá)式.

3)已知二次函數(shù)y=-x2-4x+8子函數(shù)圖象直線lx軸、y軸交于C、D兩點(diǎn),動(dòng)點(diǎn)P為二次函數(shù)y=-x2-4x+8對(duì)稱軸右側(cè)上的動(dòng)點(diǎn),求PCD的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)(其中)的圖象與x軸分別交于點(diǎn)A、B(點(diǎn)A位于B的左側(cè)),與y軸交于點(diǎn)C,過點(diǎn)Cx軸的平行線CD交二次函數(shù)圖像于點(diǎn)D

1)當(dāng)m2時(shí),求A、B兩點(diǎn)的坐標(biāo);

2)過點(diǎn)A作射線AE交二次函數(shù)的圖像于點(diǎn)E,使得BAEDAB.求點(diǎn)E的坐標(biāo)(用含m的式子表示);

3)在第(2)問的條件下,二次函數(shù)的頂點(diǎn)為F,過點(diǎn)C、F作直線與x軸于點(diǎn)G,試求出GF、AD、AE的長度為三邊長的三角形的面積(用含m的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案