【題目】如圖,△ABC是⊙O內接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O切線交AB延長線于點D.
(1)求證:CD=CB;(2)如果⊙O的半徑為,求AC的長.
【答案】(1)證明見解析;(2)+1.
【解析】
(1)首先連接OB,則∠AOB=2∠ACB=2×45°=90°,由∠AOC=150°,易得△OBC是等邊三角形,又由過點C作⊙O的切線交AB的延長線于點D,易求得∠CBD=∠D=75°,繼而證得結論;
(2)由⊙O的半徑為,可求得AB=2,CD=BC=OC=,易證得△DBC∽△DCA,然后由相似三角形的對應邊成比例,求得答案.
(1)連接OB,則∠AOB=2∠ACB=2×45°=90°,∵OA=OB,∴∠OAB=OBA=45°,
∵∠AOC=150°,OA=OC,∴∠OCA=∠OAC=15°,∴∠OCB=∠OCA+∠ACB=60°,
∴△OBC是等邊三角形,∴∠BOC=∠OBC=60°,∴∠CBD=180°﹣∠OBA﹣∠OBC=75°,
∵CD是⊙O的切線,∴OC⊥CD,
∴∠D=360°﹣∠OBD﹣∠BOC﹣∠OCD=360°﹣(60°+75°)﹣60°﹣90°=75°,
∴∠CBD=∠D,∴CB=CD;
(2)在Rt△AOB中,AB=OA=×=2,∵CD是⊙O的切線,∴∠DCB=∠CAD,
∵∠D是公共角,∴△DBC∽△DCA,∴,∴CD2=ADBD=BD(BD+AB),
∵CD=BC=OC=,∴2=BD(2+BD),解得:BD=﹣1,∴AC=AD=AB+BD=+1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BD相交于點H,連接CF.
①求證:△DAE≌△DCF.
②求證:AH2=AE2+HF2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學都有一次抽獎機會,抽獎方案如下:將一副撲克牌中點數(shù)為“2”,“3”,“3”, “5”,“6”的四張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎,記每次抽出兩張牌點數(shù)之差為x,按表格要求確定獎項.
獎項 | 一等獎 | 二等獎 | 三等獎 |
|x| | |x|=4 | |x|=3 | 1|x|<3 |
(1)用列表或畫樹狀圖的方法求出甲同學獲得一等獎的概率;
(2)求出每次抽獎獲獎的概率?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“文明禮儀”在人們長期生活和交往中逐漸形成,并以風俗、習慣等方式固定下來的.我們作為具有五千年文明史的“禮儀之邦”,更應該用文明的行為舉止, 合理的禮儀來待人接物.為促進學生弘揚民族文化、展示民族精神,某學校開展“文明禮儀”演講比賽,八年級(1)班,八年級(2)班各派出 5 名選手參加比賽,成績如圖所示.
(1)根據(jù)圖,完成表格:
平均數(shù)(分) | 中位數(shù)(分) | 極差(分) | 方差 | |
八年級(1)班 | 75 |
| 25 |
|
八年級(2)班 | 75 | 70 |
| 160 |
(2)結合兩班選手成績的平均分和方差,分析兩個班級參加比賽選手的成績;
(3)如果在每班參加比賽的選手中分別選出3人參加決賽,從平均分看,你認為哪個班的實力更強一些? 說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖1,一次函數(shù)的圖象與x軸和y軸分別交于A,B兩點,再將△AOB沿直線CD對折,使點A與點B重合.直線CD 與x軸交于點C,與AB交于點D
(1)求點A和點B的坐標
(2)求線段OC的長度
(3)如圖 2,直線 l:y=mx+n,經(jīng)過點 A,且平行于直線 CD,已知直線 CD 的函數(shù)關系式為 ,求 m,n 的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是( 。
A. (2017,0) B. (2017,)
C. (2018,) D. (2018,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△CBD中,CD=BD,CD⊥BD,BE平分∠CBA交CD于點F,CE⊥BE垂足是E,CE的延長線與BD交于點A.
(1)求證:BF=AC;
(2)求證:BE是AC的中垂線;
(3)若BD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E為正方形ABCD的邊AB上一點,EF⊥EC,且EF=EC,連接AF.過點F作FN垂直于BA的延長線于點N.
(1)求∠EAF的度數(shù);
(2)如圖2,連接FC交BD于M,交AD于N.猜想BD,AF,DM三條線段的等量關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com