【題目】若關(guān)于x的分式方程 無解,則m的值為( 。
A.﹣1.5
B.1
C.﹣1.5或2
D.﹣0.5或﹣1.5

【答案】D
【解析】解:方程兩邊都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),
即(2m+1)x=﹣6,
分兩種情況考慮:
①∵當2m+1=0時,此方程無解,
∴此時m=﹣0.5,
②∵關(guān)于x的分式方程無解,
∴x=0或x﹣3=0,
即x=0,x=3,
當x=0時,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),
解得:此方程無解;
當x=3時,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),
解得:m=﹣1.5,
∴m的值是﹣0.5或﹣1.5,
故選D.
【考點精析】通過靈活運用分式方程的解,掌握分式方程無解(轉(zhuǎn)化成整式方程來解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無解);解的正負情況:先化為整式方程,求整式方程的解即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx-5的圖象經(jīng)過點A(2,-1).

(1)求k的值;

(2)畫出這個函數(shù)的圖象;

(3)若將此函數(shù)的圖象向上平移m個單位后與坐標軸圍成的三角形的面積為1,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個能被13整除的自然數(shù)我們稱為十三數(shù)”,“十三數(shù)的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357十三數(shù)”.

(1)判斷3253254514是否為十三數(shù),請說明理由.

(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為間同數(shù)”.

求證:任意一個四位間同數(shù)能被101整除.

若一個四位自然數(shù)既是十三數(shù),又是間同數(shù),求滿足條件的所有四位數(shù)的最大值與最小值之差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與y軸相交于點A0,過點A0軸的平行線交直線y=0.5x+1于點B1,過點 B1的平行線交直線y=x+2于點A1再過點軸的平行線交直線y=0.5x+1于點B2,過點 B2軸的平行線交直線y=x+2于點A2,依此類推,得到直線y=x+2上的點A1 ,A2 ,A3 ,,與直線y=0.5x+1上的點B1,B2,B3,,則A7B8的長為

A.64 B.128 C.256 D.512

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有3個有理數(shù)x,y,z,若x=,且x與y互為相反數(shù),y是z的倒數(shù).

(1)當n為奇數(shù)時,你能求出x,y,z這三個數(shù)嗎?當n為偶數(shù)時,你能求出x,y,z這三個數(shù)嗎?若能,請計算并寫出結(jié)果;若不能,請說明理由.

(2)根據(jù)(1)的結(jié)果計算xy-yn-(y-z)2 014的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售A型和B型兩種型號的電腦,銷售一臺A型電腦可獲利120元,銷售一臺B型電腦可獲利140元.該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的3倍.設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求yx的關(guān)系式;

(2)該商店購進A型、B型電腦各多少臺,才能使銷售利潤最大?

(3)若限定商店最多購進A型電腦60臺,則這100臺電腦的銷售總利潤能否為13600元?若能,請求出此時該商店購進A型電腦的臺數(shù);若不能,請求出這100臺電腦銷售總利潤的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BFAC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:O是直線AB上的一點,是直角,OE平分

(1)如圖1.若.求的度數(shù);

(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);

(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案