【題目】如圖,在矩形ABCD中,EAD的中點(diǎn),將△ABE沿BE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)G.

(1)填空:如圖1,當(dāng)點(diǎn)G恰好在BC邊上時(shí),四邊形ABGE的形狀是___________形;

(2)如圖2,當(dāng)點(diǎn)G在矩形ABCD內(nèi)部時(shí),延長(zhǎng)BGDC邊于點(diǎn)F.

求證:BF=AB+DF;

AD=AB,試探索線段DFFC的數(shù)量關(guān)系.

【答案】正方形

【解析】

(1)如圖1,當(dāng)點(diǎn)G恰好在BC邊上時(shí),四邊形ABGE的形狀是正方形,理由為:由折疊得到兩對(duì)邊相等,三個(gè)角為直角,確定出四邊形ABEG為矩形,再由矩形對(duì)邊相等,等量代換得到四條邊相等,即鄰邊相等,即可得證;

(2)①如圖2,連接EF,由ABCD為矩形,得到兩組對(duì)邊相等,四個(gè)角為直角,再由EAD中點(diǎn),得到AE=DE,由折疊的性質(zhì)得到BG=AB,EG=AE=ED,且EGB=∠A=90°,利用HL得到直角三角形EFG與直角EDF全等,利用全等三角形對(duì)應(yīng)邊相等得到DF=FG,由BF=BG+GF,等量代換即可得證;

CF=DF,理由為:不妨假設(shè)AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,進(jìn)而表示出BF,CF,在直角BCF中,利用勾股定理列出關(guān)系式,整理得到a=2b,由CD-DF=FC,代換即可得證.

(1)正方形;

(2)①如圖2,連結(jié)EF,

在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,

∵E是AD的中點(diǎn),

∴AE=DE,

∵△ABE沿BE折疊后得到△GBE,

∴BG=AB,EG=AE=ED,∠A=∠BGE=90°

∴∠EGF=∠D=90°,

在Rt△EGF和Rt△EDF中,

∵EG=ED,EF=EF,

∴Rt△EGF≌Rt△EDF,

∴ DF=FG,

∴ BF=BG+GF=AB+DF;

②不妨假設(shè)AB=DC=,DF=,

∴AD=BC=,

由①得:BF=AB+DF

∴BF=,CF=,

在Rt△BCF中,由勾股定理得:

,

,

,

,即:CD=DF,

∵CF=DF-DF,

∴3CF=DF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)經(jīng)過抽樣調(diào)查,發(fā)現(xiàn)當(dāng)?shù)?/span>1500個(gè)老年人的養(yǎng)老模式主要有A,B,C,D,E五種,統(tǒng)計(jì)結(jié)果如圖,那么下列說法不正確的是( 。

A. 選擇A型養(yǎng)老的頻率是

B. 可以估計(jì)當(dāng)?shù)?/span>30000個(gè)老年人中有8000人選擇C型養(yǎng)老

C. 樣本容量是1500

D. 總體是當(dāng)?shù)?/span>1500個(gè)老年人的養(yǎng)老模式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中:

3x=﹣4系數(shù)化為1x=﹣;

52x移項(xiàng)得x52;

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括號(hào)得4x23x91

其中正確的個(gè)數(shù)有( 。

A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵路貨運(yùn)調(diào)度站有A、B兩個(gè)信號(hào)燈,在燈這旁?恐、乙、丙三列火車.它們中最長(zhǎng)的車長(zhǎng)與居中車長(zhǎng)之差等于居中車長(zhǎng)與最短車長(zhǎng)之差,其中乙車的車長(zhǎng)居中,最開始的時(shí)候,甲、丙兩車車尾對(duì)齊,且車尾正好位于A信號(hào)燈處,而車頭則沖著B信號(hào)燈的方向,乙車的車尾則位于B信號(hào)燈處,車頭則沖著A的方向,現(xiàn)在,三列火車同時(shí)出發(fā)向前行駛,3秒之后三列火車的車頭恰好相遇,再過9秒,甲車恰好超過丙車,而丙車也正好完全和乙車錯(cuò)開,請(qǐng)問:甲乙兩車從車頭相遇直到完全錯(cuò)開一共用了_____秒鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC是一張等腰直角三角形紙板,∠B=90°,AB=BC=1.

(1)要在這張紙板上剪出一個(gè)正方形,使這個(gè)正方形的四個(gè)頂點(diǎn)都在ABC的邊上.小林設(shè)計(jì)出了一種剪法,如圖1所示.請(qǐng)你再設(shè)計(jì)出一種不同于圖1的剪法,并在圖2中畫出來.

(2)若按照小林設(shè)計(jì)的圖1所示的剪法來進(jìn)行裁剪,記圖1為第一次裁剪,得到1個(gè)正方形,將它的面積記為,則=___________;在余下的2個(gè)三角形中還按照小林設(shè)計(jì)的剪法進(jìn)行第二次裁剪(如圖3),得到2個(gè)新的正方形,將此次所得2個(gè)正方形的面積的記為,則=___________;在余下的4個(gè)三角形中再按照小林設(shè)計(jì)的的剪法進(jìn)行第三次裁剪(如圖4),得到4個(gè)新的正方形,將此次所得4個(gè)正方形的面積的記為;按照同樣的方法繼續(xù)操作下去……,第次裁剪得到_________個(gè)新的正方形,它們的面積的=______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若ab<0,則正比例函數(shù)y=ax與反比例函數(shù) 在同一坐標(biāo)系中的大致圖象可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCO 是菱形以點(diǎn) O 為坐標(biāo)原點(diǎn),OC 所在直線為軸建立平面直角坐標(biāo)系.若點(diǎn) A 的坐 標(biāo)為(-5,12),直線 AC、邊 AB 軸的交點(diǎn)分別是點(diǎn) D 與點(diǎn) E,連接 BD.

(1)求菱形 ABCO 的邊長(zhǎng);

(2) BD 所在直線的解析式;

(3)直線 AC 上是否存在一點(diǎn) P 使得的面積相等?若存在,請(qǐng)直接寫出點(diǎn) P 的坐標(biāo)若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案