【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABCAB邊切于點(diǎn)A,將直角三角板沿BA邊所在的直線(xiàn)向右平移,當(dāng)平移到AC與圓O相切時(shí),該直角三角板的平移距離為(

A. B. C. 1D. 2

【答案】B

【解析】

作出平移后的圖形,根據(jù)切線(xiàn)的性質(zhì)證得OAD是等邊三角形,再根據(jù)切線(xiàn)長(zhǎng)定理得A’D=A A’,然后利用三角函數(shù)求出A’D,即可求出平移的距離.

解:如圖,三角板ABC平移后的AC的對(duì)應(yīng)邊為A’C’,與⊙O切于點(diǎn)D.

易知OAAB,ODA’C’,ACA’C’,OAD是等邊三角形.

AD=OA=2, A’D=A A’,

∵∠DAE=OAB-CAB=90°-60°=30°

DE=AD=1

A’D==

A A’=即平移的距離為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的。下面是一個(gè)案例,請(qǐng)補(bǔ)充完整。

原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由。

(1)思路梳理

AB=CD,

ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至ADG,可使AB與AD重合。

∵∠ADC=B=90°,

∴∠FDG=180°,點(diǎn)F、D、G共線(xiàn)。

根據(jù)    ,易證AFG    ,得EF=BE+DF。

(2)類(lèi)比引申

如圖2,四邊形ABCD中,AB=AD,BAD=90°,點(diǎn)E、F分別在邊BC、CD上,EAF=45°。若B、D都不是直角,則當(dāng)B與D滿(mǎn)足等量關(guān)系    時(shí),仍有EF=BE+DF。

(3)聯(lián)想拓展

如圖3,在ABC中,BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且DAE=45°。猜想BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出推理過(guò)程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

1)如圖,已知線(xiàn)段ABBC,AB2BC5,則線(xiàn)段AC的最小值為   ;

問(wèn)題探究

2)如圖,已知扇形COD中,∠COD90°,DOCO6,點(diǎn)AOC的中點(diǎn),延長(zhǎng)OC到點(diǎn)F,使CFOC,點(diǎn)P 上的動(dòng)點(diǎn),點(diǎn)BOD上的一點(diǎn),BD1

i)求證:△OAP~△OPF;

ii)求BP+2AP的最小值;

問(wèn)題解決:

3)如圖,有一個(gè)形狀為四邊形ABCD的人工湖,BC9千米,CD4千米,∠BCD150°,現(xiàn)計(jì)劃在湖中選取一處建造一座假山P,且BP3千米,為方便游客觀光,從CD分別建小橋PD,PC.已知建橋PD每千米的造價(jià)是3萬(wàn)元,建橋PC每千米的造價(jià)是1萬(wàn)元,建橋PDPC的總造價(jià)是否存在最小值?若存在,請(qǐng)確定點(diǎn)P的位置并求出總造價(jià)的最小值,若不存在,請(qǐng)說(shuō)明理由.(橋的寬度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx+4(a0)軸交于點(diǎn)B (3 0) C (4 ,0)軸交于點(diǎn)A

(1) a = ,b =

(2) 點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿ABB運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿BCC運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)B點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng).t為何值時(shí),以B、M、N為頂點(diǎn)的三角形是等腰三角形?

(3) 點(diǎn)P是第一象限拋物線(xiàn)上的一點(diǎn),若BP恰好平分∠ABC,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,拋物線(xiàn)yax2+bx+c過(guò)點(diǎn)A(﹣1,0),B3,0),C0,3),點(diǎn)P是直線(xiàn)BC上方拋物線(xiàn)上的一動(dòng)點(diǎn),PEy軸,交直線(xiàn)BC于點(diǎn)E連接AP,交直線(xiàn)BC于點(diǎn) D

1)求拋物線(xiàn)的函數(shù)表達(dá)式;

2)當(dāng)AD2PD時(shí),求點(diǎn)P的坐標(biāo);

3)求線(xiàn)段PE的最大值;

4)當(dāng)線(xiàn)段PE最大時(shí),若點(diǎn)F在直線(xiàn)BC上且∠EFP2ACO,直接寫(xiě)出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在陽(yáng)光大課間活動(dòng)中,某校開(kāi)展了立定跳遠(yuǎn)、實(shí)心球、長(zhǎng)跑等體育活動(dòng),為了了解九年一班學(xué)生的立定跳遠(yuǎn)成績(jī)的情況,對(duì)全班學(xué)生的立定跳遠(yuǎn)測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),并繪制了以下不完整的頻數(shù)分布直方圖和扇形圖,根據(jù)圖中信息解答下列問(wèn)題.

1)求九年一班學(xué)生總?cè)藬?shù),并補(bǔ)全頻數(shù)分布直方圖(標(biāo)注頻數(shù));

2)求2.05≤a2.25成績(jī)段在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù);

3)直接寫(xiě)出九年一班學(xué)生立定跳遠(yuǎn)成績(jī)的中位數(shù)所在的成績(jī)段;

4)九年一班在2.25≤a2.45成績(jī)段中有男生3人,女生2人,現(xiàn)要從這5人中隨機(jī)抽取2人參加學(xué)校運(yùn)動(dòng)會(huì),請(qǐng)用列表法或樹(shù)狀圖法求出恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有邊長(zhǎng)為a的正方形卡片①,邊長(zhǎng)為b的正方形卡片②,兩鄰邊長(zhǎng)分別為a,b的矩形卡片③若干張.

1)請(qǐng)用2張卡片①,1張卡片②,3張卡片③拼成一個(gè)矩形,在方框中畫(huà)出這個(gè)矩形的草圖;

2)請(qǐng)結(jié)合拼圖前后面積之間的關(guān)系寫(xiě)出一個(gè)等式;

3)小明想用類(lèi)似方法解釋多項(xiàng)式乘法(a+3b)(2a+2b)的結(jié)果,那么需用卡片①______張,卡片②______張,卡片③______張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)A,BP⊙O相交于點(diǎn)D,C⊙O上的一點(diǎn),分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)E、F分別是ABCD的邊BCAD的中點(diǎn).

1)求證:四邊形AECF是平行四邊形;

2)若BC10,∠BAC90°,求AECF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案