【題目】小文同學(xué)統(tǒng)計(jì)了某棟居民樓中全體居民每周使用手機(jī)支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法錯誤的是( 。

A.這棟居民樓共有居民125

B.每周使用手機(jī)支付次數(shù)為2835次的人數(shù)最多

C.有的人每周使用手機(jī)支付的次數(shù)在3542

D.每周使用手機(jī)支付不超過21次的有15

【答案】D

【解析】

根據(jù)直方圖表示的意義求得統(tǒng)計(jì)的總?cè)藬?shù),以及每組的人數(shù)即可判斷.

解:A、這棟居民樓共有居民3+10+15+22+30+25+20125(人),此結(jié)論正確;

B、每周使用手機(jī)支付次數(shù)為2835次的人數(shù)最多,此結(jié)論正確;

C、有的人每周使用手機(jī)支付的次數(shù)在3542次,此結(jié)論正確;

D.每周使用手機(jī)支付不超過21次的有3+10+1528人,此結(jié)論錯誤;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計(jì)的“作平行四邊形的高”的尺規(guī)作圖過程

已知:平行四邊形ABCD.

求作:,垂足為點(diǎn)E.

作法:如圖,

①分別以點(diǎn)A和點(diǎn)B為圓心,大于的長為半徑作弧,兩弧相交于P,Q兩點(diǎn);

②作直線PQ,交AB于點(diǎn)O;

③以點(diǎn)O為圓心,OA長為半徑做圓,交線段BC于點(diǎn)E;

④連接AE.

所以線段AE就是所求作的高.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程

⑴使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

⑵完成下面的證明

證明:AP=BP, AQ= ,

PQ為線段AB的垂直平分線.

O為AB中點(diǎn).

AB為直徑,⊙O與線段BC交于點(diǎn)E,

.( )(填推理的依據(jù))

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點(diǎn)(即三角形的頂點(diǎn)都在格點(diǎn)上).

1)在圖中作出關(guān)于直線l對稱的;(要求A,B,C相對應(yīng))

2)作出繞點(diǎn)C順時針方向旋轉(zhuǎn)90°后得到的

3)在(2)的條件下求出線段CB在旋轉(zhuǎn)中所掃過的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)教育系統(tǒng)為了更好地宣傳掃黑除惡專項(xiàng)斗爭,印制了應(yīng)知應(yīng)會手冊,該區(qū)教育局想了解教師對掃黑除惡專項(xiàng)斗爭應(yīng)知應(yīng)會知識掌握程度,抽取了部分教師進(jìn)行了測試,并將測試成績繪制成下面兩幅統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中提供的信息,回答下面問題:

1)計(jì)算樣本中,成績?yōu)?/span>98分的教師有   人,并補(bǔ)全兩個統(tǒng)計(jì)圖;

2)樣本中,測試成績的眾數(shù)是   ,中位數(shù)是   ;

3)若該區(qū)共有教師6880名,根據(jù)此次成績估計(jì)該區(qū)大約有多少名教師已全部掌握掃黑除惡專項(xiàng)斗爭應(yīng)知應(yīng)會知識?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQMN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達(dá)C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完概率的有關(guān)內(nèi)容后,小軍與小波共同發(fā)明了一種利用“字母棋”進(jìn)行比勝負(fù)的游戲,他們制作了5顆棋子,并在每顆棋子上標(biāo)注相應(yīng)的字母(棋子除了字母外,材質(zhì)、大小、質(zhì)地均相同),其中標(biāo)有字母X的棋子有1顆,標(biāo)有字母YZ的棋子分別有2顆.游戲規(guī)定:將5顆棋子放入一個不透明的袋子中,然后從5顆棋子中隨機(jī)摸出兩顆棋子,若摸到的兩顆棋子標(biāo)有字母X,則小軍勝;若摸到兩顆相同字母的棋子,則小波勝,其余情況為平局,則游戲重新進(jìn)行.

1)求隨機(jī)摸到標(biāo)有字母Y的棋子的概率;

2)在游戲剛準(zhǔn)備進(jìn)行的同時,數(shù)學(xué)課代表小亮對游戲的公平性產(chǎn)生了質(zhì)疑,請你通過列表法或者畫樹狀圖的方法幫小亮同學(xué)驗(yàn)證該游戲的規(guī)則是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點(diǎn)為M,直線ly2xax軸,y軸分別交于A,B

1)對于拋物線C1,以下結(jié)論正確的是   ;

對稱軸是:直線x1頂點(diǎn)坐標(biāo)(1,﹣a2);拋物線一定經(jīng)過兩個定點(diǎn).

2)當(dāng)a0時,設(shè)△ABM的面積為S,求Sa的函數(shù)關(guān)系;

3)將二次函數(shù)yax22ax2的圖象C1繞點(diǎn)Pt,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點(diǎn)為N

當(dāng)﹣2x1時,旋轉(zhuǎn)前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;

當(dāng)a1時,點(diǎn)Q是拋物線C1上的一點(diǎn),點(diǎn)Q在拋物線C2上的對應(yīng)點(diǎn)為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,內(nèi)角A、B、C的對邊分別為ab、c.若b2+c22b+4c5a2b2+c2bc,則ABC的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國魏晉時期的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式,后人借助這種分割方法所得的圖形證明了勾股定理.如圖所示,若a2,b3,現(xiàn)隨機(jī)向該圖形內(nèi)擲一枚小針,則針尖落在陰影域內(nèi)的概率為_____

查看答案和解析>>

同步練習(xí)冊答案