【題目】如圖,在ABC中,ABAC.將ABC沿著BC方向平移得到DEF,其中點(diǎn)E在邊BC上,DEAC相交于點(diǎn)O

1)求證:OEC為等腰三角形;

2)連接AEDC、AD,當(dāng)點(diǎn)E在什么位置時(shí),四邊形AECD為矩形,并說明理由.

【答案】1)見解析;(2)當(dāng)中點(diǎn)時(shí),四邊形為矩形. 見解析.

【解析】

1)根據(jù)等腰三角形的性質(zhì)得出∠B=∠ACB,根據(jù)平移得出ABDE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;

2)求出四邊形AECD是平行四邊形,再由,求出四邊形AECD是矩形即可.

1)∵,∴.

平移得到,∴.

,∴.

為等腰三角形.

2)當(dāng)中點(diǎn)時(shí),四邊形為矩形.

,且中點(diǎn).

.

平移得到,

.

.

又∵,∴四邊形為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的圖象如圖所示,則下列結(jié)論:;②;③;④.其中正確的結(jié)論是(

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3200米.甲同學(xué)先步行200米,然后乘公交車去學(xué)校,乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的3倍.甲、乙兩同學(xué)同時(shí)從家出發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到8分鐘.

1)求乙騎自行車的速度;

2)當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某店只銷售某種進(jìn)價(jià)為40/kg的產(chǎn)品,已知該店按60kg出售時(shí),每天可售出100kg,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低1元,則每天的銷售量可增加10kg.

(1)若單價(jià)降低2元,則每天的銷售量是_____千克,每天的利潤為_____元;若單價(jià)降低x元,則每天的銷售量是_____千克,每天的利潤為______元;(用含x的代數(shù)式表示)

(2)若該店銷售這種產(chǎn)品計(jì)劃每天獲利2240元,單價(jià)應(yīng)降價(jià)多少元?

(3)當(dāng)單價(jià)降低多少元時(shí),該店每天的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線、交于點(diǎn),順次聯(lián)結(jié)ABCD各邊中點(diǎn)得到的一個(gè)新的四邊形,如果添加下列四個(gè)條件中的一個(gè)條件:①;②;③;④,可以使這個(gè)新的四邊形成為矩形,那么這樣的條件個(gè)數(shù)是()

A. 1個(gè);B. 2個(gè);

C. 3個(gè);D. 4個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為抵御百年不遇的洪水,某市政府決定將長的大堤的迎水坡面鋪石加固,堤高,堤面加寬,則完成這一工程需要的石方數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊運(yùn)營商的手機(jī)上網(wǎng)流量資費(fèi)標(biāo)準(zhǔn)推出了三種優(yōu)惠方案:

方案A:按流量計(jì)費(fèi),0.1元/M;

方案B:20元流量套餐包月,包含500M流量,如果超過500M,超過部分另外計(jì)費(fèi)(見圖象),如果用到1000M時(shí),超過1000M的流量不再收費(fèi);

方案C:120元包月,無限制使用.

x表示每月上網(wǎng)流量(單位:M),y表示每月的流量費(fèi)用(單位:元),方案B和方案C對(duì)應(yīng)的y關(guān)于x的函數(shù)圖象如圖所示,請解決以下問題:

(1)寫出方案A的函數(shù)解析式,并在圖中畫出其圖象;

(2)直接寫出方案B的函數(shù)解析式;

(3)若甲乙兩人每月使用流量分別在300600M8001200M之間,請你分別給出甲乙二人經(jīng)濟(jì)合理的選擇方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).

(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是   ;

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD沿對(duì)角線AC折疊,設(shè)點(diǎn)D落在D處,BCAD于點(diǎn)EAB=6cm,BC=8cm,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案