如圖,矩形ABCD中,AB=4cm,AD=3 cm,點(diǎn)P從A點(diǎn)出發(fā),以5cm/s的速度,沿AC向C作勻速運(yùn)動;與此同時,點(diǎn)Q也從A點(diǎn)出發(fā),以4cm/s的速度,沿射線AB作勻速運(yùn)動。當(dāng)P運(yùn)動到C點(diǎn)時,P、Q都停止運(yùn)動。設(shè)點(diǎn)P運(yùn)動的時間為ts。

(1)當(dāng)P異于A.C時,證明:以P為圓心、PQ長為半徑的圓總是與邊AB相切;

(2)在整個運(yùn)動過程中,t為怎樣的值時,以P為圓心、PQ長為半徑的圓與邊BC分別有1個公共點(diǎn)和2個公共點(diǎn)?


解:(1)∵矩形ABCD中,AB=4cm,AD=3 cm,

∴AC=5 cm。

如圖1,過點(diǎn)P作PH⊥AB于點(diǎn)H,

。

∵點(diǎn)P的速度為5cm/s,運(yùn)動的時間為ts,

∴AP=5tcm。

∴AH=4tcm。

又∵點(diǎn)Q的速度為4cm/s,運(yùn)動的時間為ts,

∴AQ=4tcm。

∴點(diǎn)Q與點(diǎn)H重合。

PQ⊥AB。

∴以P為圓心、PQ長為半徑的圓總是與邊AB相切。

如圖3,⊙P過點(diǎn)C,此時PQ=PC,

∵AP=5tcm,PQ=3tcm,AC=5,

∴5t+3t=5,解得

∴當(dāng)時,⊙P與邊BC有2個公共點(diǎn)。

P與邊BC有2個公共點(diǎn)。

【考點(diǎn)】雙動點(diǎn)問題,矩形的性質(zhì),直線與圓的位置關(guān)系,勾股定理,相似三角形的判定和性質(zhì),平行的判定,切線的判定和性質(zhì),分類思想的應(yīng)用。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD的邊長是4,點(diǎn)P是邊CD上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時針旋轉(zhuǎn)90°得到線段PE,在邊AD延長線上取點(diǎn)F,使DF=DP,連接EF,CF路。

(1)求證:四邊形PCFE是平行四邊形;

(2)當(dāng)點(diǎn)P在邊CD上運(yùn)動時,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時CP長;若沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形紙片DOE的頂點(diǎn)O與邊AB的中點(diǎn)重合,OD交BC于點(diǎn)F,OE經(jīng)過點(diǎn)C,且∠DOE=∠B.

(1)證明△COF是等腰三角形,并求出CF的長;

(2)將扇形紙片DOE繞點(diǎn)O逆時針旋轉(zhuǎn),OD,OE與邊AC分別交于點(diǎn)M,N(如圖2),當(dāng)CM的長是多少時,△OMN與△BCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,等腰直角梯形ABCD中,∠ADC=∠BCD=90°,BC=CD=4,P為邊AD上的一個動點(diǎn),AE⊥BP,CF⊥BP,垂足分別為點(diǎn)E、F。證明:DE2+BF2=16。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,等腰梯形MNPQ的上底長為2,腰長為3,一個底角為60°.正方形ABCD的邊長為1,它的一邊AD在MN上,且頂點(diǎn)A與M重合.現(xiàn)將正方形ABCD在梯形的外面沿邊MN、NP、PQ進(jìn)行翻滾,翻滾到有一個頂點(diǎn)與Q重合即停止?jié)L動.

求正方形在整個翻滾過程中點(diǎn)A所經(jīng)過的路線與梯形MNPQ的三邊MN、NP、PQ所圍成圖形的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C。若直線l過點(diǎn)E(﹣4,0),M為直線l上的動點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸相交于O、B,頂點(diǎn)為A,連接OA.

(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);

(2)若將拋物線向右平移4個單位,再向上平移2個單位,再向上翻轉(zhuǎn),得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;

(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線上,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.

(1)根據(jù)“奇異三角形”的定義,請你判斷命題“等邊三角形一定是奇異三角形”是真命題還是假命題?

(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;

(3)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)A,B重合),D是半圓的中點(diǎn),C,D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE.

①求證:△ACE是奇異三角形;

②當(dāng)△ACE是直角三角形時,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖4是一塊三角板,且Ð1=Ð30° ,則2=Ð    °

查看答案和解析>>

同步練習(xí)冊答案