用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)位置放置,現(xiàn)將Rt△AEF繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點(diǎn)M,AC與EF交于點(diǎn)N,BC與EF交于點(diǎn)P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=
 
時(shí),四邊形ABPF是菱形?并說(shuō)明理由.
考點(diǎn):全等三角形的判定與性質(zhì),菱形的判定
專(zhuān)題:
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出AB=AF,∠BAM=∠FAN,進(jìn)而得出△ABM≌△AFN得出答案即可;
(2)利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=120°,∠FPC=∠B=60°,即可得出四邊形ABPF是平行四邊形,再利用菱形的判定得出答案.
解答:(1)證明:∵用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖
(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<90°),
∴AB=AF,∠BAM=∠FAN,
在△ABM和△AFN中,
∠FAN=∠BAM
AB=AF
∠B=∠F
,
∴△ABM≌△AFN(ASA),
∴AM=AN;

(2)解:當(dāng)旋轉(zhuǎn)角α=30°時(shí),四邊形ABPF是菱形.
理由:連接AP,
∵∠α=30°,
∴∠FAN=30°,
∴∠FAB=120°,
∵∠B=60°,
∴∠B+∠FAB=180°,
∴AF∥BP,
∴∠F=∠FPC=60°,
∴∠FPC=∠B=60°,
∴AB∥FP,
∴四邊形ABPF是平行四邊形,
∵AB=AF,
∴平行四邊形ABPF是菱形.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),此題主要考查了平行四邊形的判定以及菱形的判定和全等三角形的判定等知識(shí),根據(jù)旋轉(zhuǎn)前后圖形大小不發(fā)生變化得出是解題關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的幾何體的主視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O上兩點(diǎn)C、E關(guān)于直徑AB對(duì)稱(chēng),連接AC、BC,過(guò)C作CE的垂線,交⊙O于點(diǎn)D,交EB的延長(zhǎng)線交于點(diǎn)F,且BC:CA=
3
:1,AB=10,
(1)證明:B是EF的中點(diǎn);
(2)求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰△ABC,AB=BC=4,AC=6,點(diǎn)E、D分別是AB與AC邊上的兩個(gè)動(dòng)點(diǎn),滿(mǎn)足∠EDB=∠A.

(1)在圖①中,說(shuō)明:△ADE∽△CBD;
(2)在圖②中,若AE=2.25,說(shuō)明:AC與過(guò)點(diǎn)B、E、D三點(diǎn)的圓相切;
(3)在圖③中,設(shè)AE=m,m在何范圍內(nèi),AC邊上存在兩個(gè)點(diǎn)D,滿(mǎn)足∠EDB=∠A?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn):(
x
x-1
-
1
x2-x
)÷(x+1),然后從-1≤x≤2中選擇一個(gè)合適的數(shù)代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,點(diǎn)C在DE上.求證:
(1)△ABD≌△ACE;
(2)∠BDA=∠ADC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,聯(lián)結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,聯(lián)結(jié)EC.已知AB=8,CD=2.
(1)求OA的長(zhǎng)度;
(2)求CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

九年級(jí)1班的同學(xué)為了了解教學(xué)樓前一棵樹(shù)生長(zhǎng)情況,去年在教學(xué)樓前點(diǎn)A處測(cè)得樹(shù)頂點(diǎn)C的仰角為30°,樹(shù)高5米,今年他們?nèi)栽谠谹處測(cè)得大樹(shù)D的仰角為37°,問(wèn)這棵樹(shù)一年生長(zhǎng)了多少米?(精確到0.01)
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰梯形ABCD的底邊AD在x軸上,頂點(diǎn)C在y軸正半軸上,B(4,2),一次函數(shù)y=kx-1的圖象平分它的面積.若關(guān)于x的函數(shù)y=mx2-(3m+k)x+2m+k的圖象與坐標(biāo)軸只有兩個(gè)交點(diǎn),則m的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案