【題目】在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.
(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角: ;所有與∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度數(shù);
②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請說明理由.
【答案】(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【解析】
(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;
(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).
②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.
(1)由翻折的性質(zhì)可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故與∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故與∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°則,,
由翻折可知:∵, ,
∴, ,
當(dāng)∠FDE=∠DFE時(shí),, 解得:;
當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?/span>0<x≤45,故舍去);
當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?/span>0<x≤45,故舍去);
綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y1=-x+m與y軸交于點(diǎn)A(0,6),直線l2:y2=kx+1分別與x軸交于點(diǎn)B(-2,0),與y軸交于點(diǎn)C,兩條直線l1、l2相交于點(diǎn)D,連接AB.
(1)求兩直線l1、l2交點(diǎn)D的坐標(biāo);
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠B=45°,過點(diǎn)C作CE⊥AD于點(diǎn),連結(jié)AC,過點(diǎn)D作DF⊥AC于點(diǎn)F,交CE于點(diǎn)G,連結(jié)EF.
(1)若DG=8,求對角線AC的長;
(2)求證:AF+FG=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補(bǔ)角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求以A,B,C,D為頂點(diǎn)的四邊形的面積;
(2)在拋物線上是否存在點(diǎn)P,使得△ABP的面積是△ABC的面積的2倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F在線段AB上,點(diǎn)E,G在線段CD上,FG∥AE,∠1=∠2.
(1)求證:AB∥CD;
(2)若FG⊥BC于點(diǎn)H,BC平分∠ABD,∠D=112°,求∠1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,將一塊等腰直角三角形的直角頂點(diǎn)放在斜邊的中點(diǎn)處,將三角板繞點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交射線、于、兩點(diǎn).如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
(1)觀察圖①,當(dāng)三角板繞點(diǎn)旋轉(zhuǎn)到時(shí),我們發(fā)現(xiàn):__________.(選填“”、“”或“”)
(2)當(dāng)三角板繞點(diǎn)旋轉(zhuǎn)到圖②所示位置時(shí),判斷(1)題中與之間的大小關(guān)系還存在嗎?請你結(jié)合圖②說明理由.
(3)三角板繞點(diǎn)旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(那寫出為等腰三角形時(shí)的長);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有、兩種型號的客車共20輛,它們的載客量、每天的租金如下表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求、兩種型號的客車各有多少輛?
(2)某中學(xué)計(jì)劃租用、兩種型號的客車共8輛,同時(shí)送七年級師生到沙家浜參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車的總費(fèi)用不超過4600元. 求最多能租用多少輛A型號客車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用熱氣球探測器測量大樓AB的高度,從熱氣球P處測得大樓B的俯角為37°,大樓底部A的俯角為60°,此時(shí)熱氣球P離底面的高度為120m.試求大樓AB的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com