【題目】如圖,直線相交于點,.
(1)已知,求的度數(shù);
(2)如果是的平分線,那么是的平分線嗎?說明理由.
【答案】(1) 51°48′,(2). 是的平分線,理由詳見解析.
【解析】
(1)根據(jù)平角,直角的性質(zhì),解出∠BOG的度數(shù)即可.
(2)根據(jù)角平分線的性質(zhì)算出答案即可.
(1)由題意得:∠AOC=38°12′,∠COG=90°,
∴∠BOG=∠AOB-∠AOC-∠COG=180°-38°12′-90°=51°48′.
(2) OG是∠EOB的平分線,理由如下:
由題意得:∠BOG=90°-∠AOC,∠EOG=90°-∠COE,
∵OC是∠AOE的平分線,
∴∠AOC=∠COE
∴∠BOG=90°-∠AOC=90°-∠COE=∠EOG
∴OG是∠EOB的平分線.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生全部參加“初二生物地理會考”,從中抽取了部分學生的生物考試成績,將他們的成績進行統(tǒng)計后分為A,B,C,D四等,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題(說明:測試總?cè)藬?shù)的前30%考生為A等級,前30%至前70%為B等級,前70%至前90%為C等級,90%以后為D等級)
(1)抽取了 名學生成績;
(2)請把頻數(shù)分布直方圖補充完整;
(3)扇形統(tǒng)計圖中A等級所在的扇形的圓心角度數(shù)是 ;
(4)若測試總?cè)藬?shù)前90%為合格,該校初二年級有900名學生,求全年級生物合格的學生共約多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.
(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;
(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知12箱蘋果,以每箱10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),稱重記錄如下:
+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。
⑴求12箱蘋果的總重量;
⑵若每箱蘋果的重量標準為100.5(千克),則這12箱有幾箱不合乎標準的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個角的外角和為180°,∠5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則∠BPD 的度數(shù)是( 。
A. 130° B. 120° C. 110° D. 100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察下列各式:
……試用你發(fā)現(xiàn)的規(guī)律填空: , 。
(2)請你用含有一個字母的等式將上面各式呈現(xiàn)的規(guī)律表示出來,并用所學數(shù)學知識說明你所寫式子的正確性。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一張長方形的紙對折,如圖所示,可得到一條折痕(圖中虛線),繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到7條折痕,
(1)折一折,數(shù)一數(shù),連續(xù)對折四次后,可以得到多少條折痕?
(2)想一想,如果對折n次,可以得到多少條折痕?
(3)如果能對折10次,可以得到多少條折痕?
(4)如果對折n次,可以得到多少個一樣大小的小長方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,二次函數(shù)y=-x2+bx+c的圖像經(jīng)過點A(4,0)B(-4,-4),且與y軸交于點C.
(1)求此二次函數(shù)的解析式;
(2)證明:∠BAO=∠CAO(其中O是原點);
(3)若P是線段AB上的一個動點(不與A、B重合),過P作y軸的平行線,分別交此二次函數(shù)圖像及x軸于Q、H兩點,試問:是否存在這樣的點 P,使PH=2QH?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com