【題目】如圖,RtAOB中,∠AOB=90°,頂點(diǎn)A,B分別在反比例函數(shù)()()的圖象上,則tanBAO的值為(  )

A.1B.2C.3D.

【答案】D

【解析】

過(guò)AACx軸,過(guò)BBDx軸于D,于是得到∠BDO=ACO=90°,根據(jù)反比例函數(shù)的性質(zhì)得到SBDO=SAOC=,根據(jù)相似三角形的性質(zhì)得到=2=5,求得=,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

解:過(guò)AACx軸,過(guò)BBDx軸于D,


則∠BDO=ACO=90°,
∵頂點(diǎn)AB分別在反比例函數(shù)x0)與x0)的圖象上,
SBDO=,SAOC=,
∵∠AOB=90°,
∴∠BOD+DBO=BOD+AOC=90°
∴∠DBO=AOC,
∴△BDO∽△OCA
=2=5,
=,
tanBAO==,
故答案為:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BPCP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BDCF相交于點(diǎn)H.給出下列結(jié)論:

①△ABE≌△DCF;PDF=15°;,其中正確的結(jié)論有(  

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物上掛著“巴山渝水,魅力重慶”的宣傳條幅,王同學(xué)利用測(cè)傾器在斜坡的底部處測(cè)得條幅底部的仰角為60°,沿斜坡AB走到B處測(cè)得條幅頂部C的仰角為50°.已知斜坡的坡度米,米(點(diǎn)在同平面內(nèi),,測(cè)傾器的高度忽略不計(jì)),則條幅的長(zhǎng)度約為(參考數(shù)據(jù):

A.12.5B.12.8C.13.1D.13.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABCD中,EAD的中點(diǎn),CE的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,則下列選項(xiàng)中的結(jié)論錯(cuò)誤的是(  )

A. FA:FB=1:2 B. AE:BC=1:2

C. BE:CF=1:2 D. SABE:SFBC=1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的邊軸的正半軸上,,反比例函數(shù)()的圖象經(jīng)過(guò)點(diǎn)

(1)求反比例函數(shù)的關(guān)系式和點(diǎn)的坐標(biāo),

(2)過(guò)的中點(diǎn)軸交反比例函數(shù)圖象于點(diǎn),連接.求△的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,圓內(nèi)接四邊形ABCD,ADBCAB是⊙O的直徑.

1)求證:ABCD;

2)如圖2,連接OD,作∠CBE2ABDBEDC的延長(zhǎng)線于點(diǎn)E,若AB6AD2,求CE的長(zhǎng);

3)如圖3,延長(zhǎng)OB使得BHOB,DF是⊙O的直徑,連接FH,若BDFH,求證:FH是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙OAC于點(diǎn)D,點(diǎn)EAB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長(zhǎng)線交⊙O于點(diǎn)G,DFDG,且交BC于點(diǎn)F.

(1)求證:AE=BF;

(2)連接EF,求證:∠FEB=∠GDA;

(3)連接GF,AE=2,EB=4,求ΔGFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線軸交于點(diǎn)、,與軸交于點(diǎn),點(diǎn)的坐標(biāo)為的半徑為2,上的一動(dòng)點(diǎn),點(diǎn)的中點(diǎn),則最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:在教學(xué)課上,老師提出如下問(wèn)題:尺規(guī)作圖:作一條線段的垂直平分線.

已知:線段AB.

求作:線段AB的垂直平分線.

小蕓的作法如下:如圖, 1)分別以點(diǎn)A和點(diǎn)B為圓心,大于的長(zhǎng)為半徑作弧,兩孤相交于C,D兩點(diǎn); 2)作直線CD.所以直線CD就是所求作的垂直平分線.

老師說(shuō):小蕓的作法正確.”

請(qǐng)回答:小蕓的作圖依據(jù)是____________________,

查看答案和解析>>

同步練習(xí)冊(cè)答案