若關(guān)于的一元二次方程有實(shí)數(shù)根,且,有下列結(jié)論:
①;②;③當(dāng)時(shí),;④二次函數(shù)圖象與軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).其中一定成立的結(jié)論是( )
A.①③④ B.②③④ C.②③ D.②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖6,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,∠ADC=30o,
①四邊形ACED是平行四邊形;②△BCE是等腰三角形
③四邊形ACEB的周長(zhǎng)是10+2
④四邊形ACEB的面積是16
則以上結(jié)論正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
右圖是一個(gè)由7個(gè)同樣的立方體疊成的幾何體,則這一幾何體的三 視圖中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A.主視圖 B. 左視圖
C.俯視圖 D. 左視圖與俯視圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,某堤壩的橫截面是梯形ABCD,背水坡AD的坡度i(即tan)為1︰1.2,壩高為5米,F(xiàn)為了提高堤壩的防洪抗洪能力,市防汛指揮部決定加固堤壩,要求壩頂CD加寬1米,形成新的背水坡EF,其坡度為1︰1.4。已知堤壩總長(zhǎng)度為4000米。
(1)求完成該工程需要多少土方?
(2)該工程由甲、乙兩個(gè)工程隊(duì)同時(shí)合作完成,按原計(jì)劃需要20天。準(zhǔn)備開工前接到上級(jí)通知,汛期可能提前,要求兩個(gè)工程隊(duì)提高工作效率。甲隊(duì)工作效率提高30%,乙隊(duì)工作效率提高40%,結(jié)果提前5天完成。問這兩個(gè)工程隊(duì)原計(jì)劃每天各完成多少土方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
從下列4個(gè)函數(shù):①;②;③;④中任取一個(gè),函數(shù)值y隨自變量x的增大而增大的概率是( )
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
當(dāng)點(diǎn)A(1,2),B(3,-3),C三點(diǎn)可以確定一個(gè)圓時(shí),需要滿足的條件 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)的圖象交于點(diǎn)A(m,1)和B(-m,-1)(m≠0).
(1)當(dāng)m=2時(shí),分別求反比例函數(shù)和二次函數(shù)的解析式;
(2)若二次函數(shù)的頂點(diǎn)在反比例函數(shù)上,求出此時(shí)的m值;
(3)當(dāng)時(shí),這兩個(gè)函數(shù)的增減性一致,請(qǐng)寫出滿足條件的最小整數(shù)m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,矩形OEFG的頂點(diǎn)F的坐標(biāo)為(4,2),將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸上,得到矩形OMNP,OM與GF相交于點(diǎn)A.若經(jīng)過點(diǎn)A的反比例函數(shù)的圖象交EF于點(diǎn)B,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com