【題目】(14分)如圖,已知拋物線()與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線的對(duì)稱軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).
【答案】(1);(2)當(dāng)a=時(shí),S四邊形BOCE最大,且最大值為,此時(shí),點(diǎn)E坐標(biāo)為(,);(3)P(﹣1,1)或(﹣1,﹣2).
【解析】
試題分析:(1)將A、B兩點(diǎn)的坐標(biāo)代入拋物線的解析式中,即可求出二次函數(shù)的解析式;
(2)過E作EF⊥x軸于F.設(shè)E(a,)(﹣3<a<0),則EF=,BF=a+3,OF=﹣a,∴S四邊形BOCE==BFEF+(OC+EF)OF =,配方即可得出結(jié)論,當(dāng)a=時(shí),=大,即可得到點(diǎn)E的坐標(biāo);
(3)由P在拋物線的對(duì)稱軸上,設(shè)出P坐標(biāo)為(﹣2,m),如圖所示,過A′作A′N⊥對(duì)稱軸于N,由旋轉(zhuǎn)的性質(zhì)可證明△A′NP≌△PMA,得到A′N=PM=|m|,PN=AM=2,表示出A′坐標(biāo),將A′坐標(biāo)代入拋物線解析式中求出相應(yīng)m的值,即可確定出P的坐標(biāo).
試題解析:(1)∵拋物線()與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求拋物線解析式為:;
(2)如圖2,過點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四邊形BOCE==BFEF+(OC+EF)OF===,∴當(dāng)a=時(shí),S四邊形BOCE最大,且最大值為.此時(shí),點(diǎn)E坐標(biāo)為(,);
(3)∵拋物線的對(duì)稱軸為x=﹣1,點(diǎn)P在拋物線的對(duì)稱軸上,∴設(shè)P(﹣1,m),∵線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,如圖,∴PA=PA′,∠APA′=90°,如圖3,過A′作A′N⊥對(duì)稱軸于N,設(shè)對(duì)稱軸于x軸交于點(diǎn)M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP與△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300千米的A、B兩地同時(shí)出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.
(1)請(qǐng)直接寫出甲、乙兩車離各自出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并標(biāo)明自變量x的取值范圍;
(2)它們?cè)谛旭偟倪^程中有幾次相遇?并求出每次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,點(diǎn)P在弧AB上(不含點(diǎn)A、B),把△AOP沿OP對(duì)折,點(diǎn)A的對(duì)應(yīng)點(diǎn)C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(shí)(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(shí)(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當(dāng)P、C都在AB上方時(shí)(如圖3),過C點(diǎn)作CD⊥直線AP于D,且CD是⊙O的切線,求證:AB=4PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分6分)小明家的房前有一塊矩形的空地,空地上有三棵樹A、B、C,小明
想建一個(gè)圓形花壇,使三棵樹都在花壇的邊上.
(1)(本小題滿分4分)請(qǐng)你幫小明把花壇的位置畫出來(尺規(guī)作圖,不寫作法,保
留作圖痕跡).
(2)(本小題滿分2分))若△ABC中AB=8米,AC=6米,∠BAC=,試求小明家圓形花壇的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的三邊長分別是3,1﹣2a,8.則數(shù)a的取值范圍是( 。
A. ﹣5<a<﹣2B. ﹣5<a<2C. 5<a<11D. 0<a<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解參加運(yùn)動(dòng)會(huì)的2000名運(yùn)動(dòng)員的年齡情況,從中抽查了100名運(yùn)動(dòng)員的年齡.就這個(gè)問題來說,下面說法中正確的是( )
A.2000名運(yùn)動(dòng)員是總體
B.每個(gè)運(yùn)動(dòng)員是個(gè)體
C.100名運(yùn)動(dòng)員是抽取的一個(gè)樣本
D.抽取的100名運(yùn)動(dòng)員的年齡是樣本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于軸對(duì)稱位置變換,說法正確的有( )
①對(duì)應(yīng)線段平行且相等;
②對(duì)應(yīng)點(diǎn)的連線被對(duì)稱軸垂直平分;
③對(duì)應(yīng)角相等;
④軸對(duì)稱得到的圖形與原圖形全等.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2014年投入教育經(jīng)費(fèi)200萬元,2016年投入教育經(jīng)費(fèi)242萬元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;
(2)根據(jù)(1)所得的年平均增長率,預(yù)計(jì)2017年該地區(qū)將投入教育經(jīng)費(fèi)多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com